In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equat...In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.展开更多
In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he so...In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs.展开更多
The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are est...The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.展开更多
This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model...This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.展开更多
A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, ...A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.展开更多
In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomi...In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].展开更多
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified wa...By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.展开更多
In this work, the HB method is extended to search for similarity reduction of nonlinear partial differential equations. This method is generalized and will apply for a (2 + 1)-dimensional higher order Broer-Kaup Syste...In this work, the HB method is extended to search for similarity reduction of nonlinear partial differential equations. This method is generalized and will apply for a (2 + 1)-dimensional higher order Broer-Kaup System. Some new exact solutions of Broer-Kaup System are found.展开更多
In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration ...In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration Method (VIM). The results reveal that the two methods are very effective, simple and very close to the exact solution.展开更多
In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e m...In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Bgcklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Bgcklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.展开更多
In this paper,physics-informed liquid networks(PILNs)are proposed based on liquid time-constant networks(LTC)for solving nonlinear partial differential equations(PDEs).In this approach,the network state is controlled ...In this paper,physics-informed liquid networks(PILNs)are proposed based on liquid time-constant networks(LTC)for solving nonlinear partial differential equations(PDEs).In this approach,the network state is controlled via ordinary differential equations(ODEs).The significant advantage is that neurons controlled by ODEs are more expressive compared to simple activation functions.In addition,the PILNs use difference schemes instead of automatic differentiation to construct the residuals of PDEs,which avoid information loss in the neighborhood of sampling points.As this method draws on both the traveling wave method and physics-informed neural networks(PINNs),it has a better physical interpretation.Finally,the KdV equation and the nonlinear Schr¨odinger equation are solved to test the generalization ability of the PILNs.To the best of the authors’knowledge,this is the first deep learning method that uses ODEs to simulate the numerical solutions of PDEs.展开更多
More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications.Data that we encounter often have certain embedded sparsity structures.That is,if t...More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications.Data that we encounter often have certain embedded sparsity structures.That is,if they are represented in an appropriate basis,their energies can concentrate on a small number of basis functions.This paper is devoted to a numerical study of adaptive approximation of solutions of nonlinear partial differential equations whose solutions may have singularities,by deep neural networks(DNNs)with a sparse regularization with multiple parameters.Noting that DNNs have an intrinsic multi-scale structure which is favorable for adaptive representation of functions,by employing a penalty with multiple parameters,we develop DNNs with a multi-scale sparse regularization(SDNN)for effectively representing functions having certain singularities.We then apply the proposed SDNN to numerical solutions of the Burgers equation and the Schrödinger equation.Numerical examples confirm that solutions generated by the proposed SDNN are sparse and accurate.展开更多
This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a sig...This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.展开更多
There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works conc...There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.展开更多
In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amen...In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective.展开更多
In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differen...In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.展开更多
In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and D...In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.展开更多
In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these fu...In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.展开更多
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
This paper is a brief introduction to Yang-Mills-Higgs model, MaxwellHiggs model, Einstein’s vacuum model, Yang-Baxter model, Chern-SimonsHiggs model and a discussion of the associated partial differential equation p...This paper is a brief introduction to Yang-Mills-Higgs model, MaxwellHiggs model, Einstein’s vacuum model, Yang-Baxter model, Chern-SimonsHiggs model and a discussion of the associated partial differential equation problems.展开更多
文摘In this paper, we extend the mapping deformation method proposed by Lou. It is used to find new exacttravelling wave solutions of nonlinear partial differential equation or coupled nonlinear partial differential equations(PDEs). Based on the idea of the homogeneous balance method, we construct the general mapping relation betweenthe solutions of the PDEs and those of the cubic nonlinear Klein-Gordon (NKG) equation. By using this relation andthe abundant solutions of the cubic NKG equation, many explicit and exact travelling wave solutions of three systemsof coupled PDEs, which contain solitary wave solutions, trigonometric function solutions, Jacobian elliptic functionsolutions, and rational solutions, are obtained.
基金supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No.06AZ081)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No.KLMM0806)the shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs.
基金the Science Foundation of the Science and Technology Commission of Shanghai Municipality(No.075105118)the Shanghai Leading Academic Discipline Project(No.T0401)the Fund for E-institute of Shanghai Universities(No.E03004)
文摘The Laguerre spectral and pseudospectral methods are investigated for multidimensional nonlinear partial differential equations. Some results on the modified Laguerre orthogonal approximation and interpolation are established, which play important roles in the related numerical methods for unbounded domains. As an example, the modified Laguerre spectral and pseudospectral methods are proposed for two-dimensional Logistic equation. The stability and convergence of the suggested schemes are proved. Numerical results demonstrate the high accuracy of these approaches.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10661005)Fujian Province Science and Technology Plan Item (Grant No. 2008F5019)
文摘This paper proposes a lattice Boltzmann model with an amending function for one-dimensional nonlinear partial differential equations (NPDEs) in the form ut +αuux +βu^nuz +γuxx +δuzxx +ζxxxx = 0. This model is different from existing models because it lets the time step be equivalent to the square of the space step and derives higher accuracy and nonlinear terms in NPDEs. With the Chapman-Enskog expansion, the governing evolution equation is recovered correctly from the continuous Boltzmann equation. The numerical results agree well with the analytical solutions.
文摘A new method is applied to study the asymptotic behavior of solutions of boundary value problems for a class of systems of nonlinear differential equations u' = nu, epsilon nu' + f(x, u, u')nu' - g(x, u, u') nu = 0 (0 < epsilon much less than 1). The asymptotic expansions of solutions are constructed, the remainders are estimated. The former works are improved and generalized.
文摘In this paper, we present a new method, a mixture of homotopy perturbation method and a new integral transform to solve some nonlinear partial differential equations. The proposed method introduces also He’s polynomials [1]. The analytical results of examples are calculated in terms of convergent series with easily computed components [2].
文摘By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.
文摘In this work, the HB method is extended to search for similarity reduction of nonlinear partial differential equations. This method is generalized and will apply for a (2 + 1)-dimensional higher order Broer-Kaup System. Some new exact solutions of Broer-Kaup System are found.
文摘In this paper, a numerical solution of nonlinear partial differential equation, Benjamin-Bona-Mahony (BBM) and Cahn-Hilliard equation is presented by using Adomain Decomposition Method (ADM) and Variational Iteration Method (VIM). The results reveal that the two methods are very effective, simple and very close to the exact solution.
基金0ne of the authors (H.Z. Liu) would like to express his sincere thanks to Dr. Shou-Feng Shen for his continuous encouragement and warm-hearted help.
文摘In this article, we will derive an equality, where the Taylor series expansion around ε= 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter e must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Bgcklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Bgcklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.
基金supported by the National Natural Science Foundation of China under Grant Nos.11975143 and 12105161.
文摘In this paper,physics-informed liquid networks(PILNs)are proposed based on liquid time-constant networks(LTC)for solving nonlinear partial differential equations(PDEs).In this approach,the network state is controlled via ordinary differential equations(ODEs).The significant advantage is that neurons controlled by ODEs are more expressive compared to simple activation functions.In addition,the PILNs use difference schemes instead of automatic differentiation to construct the residuals of PDEs,which avoid information loss in the neighborhood of sampling points.As this method draws on both the traveling wave method and physics-informed neural networks(PINNs),it has a better physical interpretation.Finally,the KdV equation and the nonlinear Schr¨odinger equation are solved to test the generalization ability of the PILNs.To the best of the authors’knowledge,this is the first deep learning method that uses ODEs to simulate the numerical solutions of PDEs.
基金Y.Xu is supported in part by US National Science Foundation under grant DMS1912958T.Zeng is supported in part by the National Natural Science Foundation of China under grants 12071160 and U1811464+2 种基金by the Natural Science Foundation of Guangdong Province under grant 2018A0303130067by the Opening Project of Guangdong Province Key Laboratory of Computational Science at the Sun Yat-sen University under grant 2021022by the Opening Project of Guangdong Key Laboratory of Big Data Analysis and Processing under grant 202101.
文摘More competent learning models are demanded for data processing due to increasingly greater amounts of data available in applications.Data that we encounter often have certain embedded sparsity structures.That is,if they are represented in an appropriate basis,their energies can concentrate on a small number of basis functions.This paper is devoted to a numerical study of adaptive approximation of solutions of nonlinear partial differential equations whose solutions may have singularities,by deep neural networks(DNNs)with a sparse regularization with multiple parameters.Noting that DNNs have an intrinsic multi-scale structure which is favorable for adaptive representation of functions,by employing a penalty with multiple parameters,we develop DNNs with a multi-scale sparse regularization(SDNN)for effectively representing functions having certain singularities.We then apply the proposed SDNN to numerical solutions of the Burgers equation and the Schrödinger equation.Numerical examples confirm that solutions generated by the proposed SDNN are sparse and accurate.
基金supported by the UK EPSRC Science and Innovation Award to the Oxford Centre for Nonlinear PDE(No.EP/E035027/1)the UK EPSRC Award to the EPSRC Centre for Doctoral Training in PDEs(No.EP/L015811/1)+1 种基金the National Natural Science Foundation of China(No.10728101)the Royal Society-Wolfson Research Merit Award(UK)
文摘This paper presents several examples of fundamental problems involving weak continuity and compactness for nonlinear partial differential equations, in which compensated compactness and related ideas have played a significant role. The compactness and convergence of vanishing viscosity solutions for nonlinear hyperbolic conservation laws are first analyzed, including the inviscid limit from the Navier-Stokes equations to the Euler equations for homentropic flow, the vanishing viscosity method to construct the global spherically symmetric solutions to the multidimensional compressible Euler equations, and the sonic-subsonic limit of solutions of the full Euler equations for multi-dimensional steady compressible fluids. Then the weak continuity and rigidity of the Gauss-Codazzi-Ricci system and corresponding isometric embeddings in differential geometry are revealed. Further references are also provided for some recent developments on the weak continuity and compactness for nonlinear partial differential equations.
文摘There are many works on the asymptotic stability of second dimensional nonlinear differential equation. In particular, these results only concern with the system which includes one or two terms, whereas few works concern with system which includes more than two terms. In this paper, system which includes four nonlinear terms are studies. We obtain the global asymptotic stability of zero solution, and discard the condition which require the Liapunov function trends to infinity, and only require that the positive orbit is bounded.
基金Supported by the National Natural Science Foundation of China (Grant No 10661005) the Science and Technology Plan Item of Fujian Province (Grant No 2008F5019)
文摘In this paper, we consider a one-dimensional nonlinear partial differential equation that has the form ut + αuux + βunux - γuxx + δuxxx = F(u). A higher order lattice Bhatnager-Gross-Krook (BGK) model with an amending-function is proposed. With the Chapman-Enskog expansion, different kinds of nonlinear partial differential equations are recovered correctly from the continuous Boltzmann equation. The numerical results show that this method is very effective.
基金Supported by the Natural Science Foundation of China(10471086)Supported by the Science Research Foundation of Department of Education of Hunan Province(07C164)
文摘In this paper,by making use of the calculous technique and some results of the impulsive differential inequality,oscillatory properties of the solutions of certain nonlinear impulsive delay hyperbolic partial differential equations with nonlinear diffusion coefficient are investigated.Sufficient conditions for oscillations of such equations are obtained.
基金the Natural Science Foundation of Hunan Province(10471086)the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘In this paper, some sufficient conditions are obtained for the oscillation of solutions for a class of second order nonlinear neutral partial differential equations with continuous distribution delay under Robin and Dirichlet's boundary value conditions.
文摘In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90511009 and 40305006 Cprrespondence author,
文摘In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
文摘This paper is a brief introduction to Yang-Mills-Higgs model, MaxwellHiggs model, Einstein’s vacuum model, Yang-Baxter model, Chern-SimonsHiggs model and a discussion of the associated partial differential equation problems.