The vortex-induced vibration is a well-known problem in mechanics,In this paper,with the help fixed point principle, we study. this problem and find the existencecondition of the periodic solution as well as the regio...The vortex-induced vibration is a well-known problem in mechanics,In this paper,with the help fixed point principle, we study. this problem and find the existencecondition of the periodic solution as well as the region of parameters.展开更多
In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show ...In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.展开更多
In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and t...In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.展开更多
By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help o...By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.展开更多
We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robus...We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.展开更多
In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publicati...Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publications both at home and abroad in recent years Based on these papers and in virtue of Leibniz formula,and transformation set technique,this paper puts forth the solution to nonlinear ordinary differential equation set of higher-orders, moveover,its integrability is proven.The results obtained are the generalization of those in the references.展开更多
In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using par...In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using parallel symbolic calculations to obtain solutions in analytical form. We showed the convergence of the scheme of successive approximations on the period, and also considered an example of a second order system where the described scheme of calculations can be applied.展开更多
This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which ...This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-u...In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.展开更多
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation...Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.展开更多
In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then...In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.展开更多
In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he so...In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs.展开更多
By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified wa...By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.展开更多
In Ref [1] the asymptotic stability of nonlinear slowly changing system has been discussed .In Ref [2] the instability of solution for the order linear differential equaiton with varied coefficient has been discussed ...In Ref [1] the asymptotic stability of nonlinear slowly changing system has been discussed .In Ref [2] the instability of solution for the order linear differential equaiton with varied coefficient has been discussed .In this paper,we have discussed instability of solution for a class of the third order nonlinear diffeential equation by means of the metod of Refs [1] and [2] .展开更多
In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improv...In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.展开更多
This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MA...This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MAPLE, we obtained abundant soliton-like and/or period-form solutions to the (2+1)-dimensional Toda equation. It seems that solitary wave solutions are merely special cases in one family. Furthermore, the method can also be applied to other nonlinear differential-difference equations.展开更多
This paper is concerned with the existence of periodic solutions for a nonlinear system of ordinary differential equations.We obtain a Nagumo-type a priori bound for the periodic solutions and then by using this a pri...This paper is concerned with the existence of periodic solutions for a nonlinear system of ordinary differential equations.We obtain a Nagumo-type a priori bound for the periodic solutions and then by using this a priori bound we prove the existence of at least one T-periodic solution under some general conditions展开更多
This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity ...This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.展开更多
文摘The vortex-induced vibration is a well-known problem in mechanics,In this paper,with the help fixed point principle, we study. this problem and find the existencecondition of the periodic solution as well as the region of parameters.
文摘In this paper, a new approach for solving the second order nonlinear ordinary differential equation y’’ + p(x;y)y’ = G(x;y) is considered. The results obtained by this approach are illustrated by examples and show that this method is powerful for this type of equations.
基金Project Supported by the Science Fund of the Chinese Academy of Sciences
文摘In this paper,the method of differential inequalities has been applied to study theboundary value problems of nonlinear ordinary differential equation with two parameters.The asymptotic solutions have been found and the remainders have been estimated.
文摘By using the method in [3], several useful estimations of the derivatives of the solution of the boundary value problem for a nonlinear ordinary differential equation with a turning point are obtained. With the help of the technique in [4], the uniform convergence on the small parameter e for a difference scheme is proved. At the end of this paper, a numerical example is given. The numerical result coincides with theoretical analysis.
文摘We employ the Duan-Rach-Wazwaz modified Adomian decomposition method for solving initial value problems for the systems of nonlinear ordinary differential equations numerically. In order to confirm practicality, robustness and reliability of the method, we compare the results from the modified Adomian decomposition method with those from the MATHEMATICA solutions and also from the fourth-order Runge Kutta method solutions in some cases. Furthermore, we apply Padé approximants technique to improve the solutions of the modified decomposition method whenever the exact solutions exist.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 90511009 and 40305006 Cprrespondence author,
文摘In this paper, by applying the Jacobi elliptic function expansion method, the periodic solutions for two coupled nonlinear partial differential equations are obtained.
文摘Because of the extensive applications of nonlinear ordinary differential equation in physics,mechanics and cybernetics,there have been many papers on the exact solution to differential equation in some major publications both at home and abroad in recent years Based on these papers and in virtue of Leibniz formula,and transformation set technique,this paper puts forth the solution to nonlinear ordinary differential equation set of higher-orders, moveover,its integrability is proven.The results obtained are the generalization of those in the references.
文摘In this article we proposed a method for constructing approximations to periodic solutions of one class nonautonomous system of ordinary differential equations. It is based on successive approximation scheme using parallel symbolic calculations to obtain solutions in analytical form. We showed the convergence of the scheme of successive approximations on the period, and also considered an example of a second order system where the described scheme of calculations can be applied.
文摘This paper deals with the problems of finding periodic solutions for the third order ordinary differential equations of the form (1) where T is a fixed positive number and f satisfies some additional conditions which will be stated later.The periodicity problem has been one of main topics in the qualitative theory of ordinary
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
基金The work was supported in part by the Special Funds of State Major Basic Research Projects (Grant No.1999032804) by scientific Research Fund of Hunan Provincial Education Department (03C508).
文摘In this paper, n-degree continuous finite element method with interpolated coefficients for nonlinear initial value problem of ordinary differential equation is introduced and analyzed. An optimal superconvergence u-uh = O(hn+2), n ≥ 2, at (n + 1)-order Lobatto points in each element respectively is proved. Finally the theoretical results are tested by a numerical example.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 0 2 0 3 7)
文摘Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
基金the support of CSIR,Govt.of India,Grant No.-25(0215)/13/EMR-II
文摘In this paper, we introduce new concepts of a-type F-contractive mappings which are essentially weaker than the class of F-contractive mappings given in [21, 22] and different from a-GF-contractions given in [8]. Then, sufficient conditions for the existence and uniqueness of fixed point are established for these new types of contractive mappings, in the setting of complete metric space. Consequently, the obtained results encompass various generalizations of the Banach contraction principle. Moreover, some examples and an application to nonlinear fractional differential equation are given to illustrate the usability of the new theory.
基金supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No.06AZ081)the Science Foundation of Key Laboratory of Mathematics Mechanization (Grant No.KLMM0806)the shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘In this paper, with the aid of the symbolic computation, a further extended tanh function method was presented. Based on the new general ansatz, many nonlinear partial differential equation(s)(NPDE(s)) can he solved. Especially, as applications, a compound KdV-mKdV equation and the Broer-Kaup equations are considered successfully, and many solutions including periodic solutions, triangle solutions, and rational solutions are obtained. The method can also be applied to other NPDEs.
文摘By using the generally projective Riccati equation method, a series of doubly periodic solutions (Jacobi elliptic function solution) for a class of nonlinear partial differential equations are obtained in a unified way. When the module m → 1, these solutions exactly degenerate to the soliton solutions of the equations. Then we reveal the relationship between the soliton-like solutions obtained by other authors and these soliton solutions of the equations.
文摘In Ref [1] the asymptotic stability of nonlinear slowly changing system has been discussed .In Ref [2] the instability of solution for the order linear differential equaiton with varied coefficient has been discussed .In this paper,we have discussed instability of solution for a class of the third order nonlinear diffeential equation by means of the metod of Refs [1] and [2] .
文摘In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.
基金supported by the National Natural Science Foundation of Chinathe Natural Science Foundation of Shandong Province in China (Grant No Y2007G64)
文摘This paper presents a new and efficient approach for constructing exact solutions to nonlinear differential-difference equations (NLDDEs) and lattice equation. By using this method via symbolic computation system MAPLE, we obtained abundant soliton-like and/or period-form solutions to the (2+1)-dimensional Toda equation. It seems that solitary wave solutions are merely special cases in one family. Furthermore, the method can also be applied to other nonlinear differential-difference equations.
基金Research supported by the NNSF of China and the RFDP of China.
文摘This paper is concerned with the existence of periodic solutions for a nonlinear system of ordinary differential equations.We obtain a Nagumo-type a priori bound for the periodic solutions and then by using this a priori bound we prove the existence of at least one T-periodic solution under some general conditions
文摘This article is a review and promotion of the study of solutions of differential equations in the “neighborhood of infinity” via a non traditional compactification. We define and compute critical points at infinity of polynomial autonomuos differential systems and develop an explicit formula for the leading asymptotic term of diverging solutions to critical points at infinity. Applications to problems of completeness and incompleteness (the existence and nonexistence respectively of global solutions) of dynamical systems are provided. In particular a quadratic competing species model and the Lorentz equations are being used as arenas where our technique is applied. The study is also relevant to the Painlevé property and to questions of integrability of dynamical systems.