In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolso...In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.展开更多
A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is ...A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
The key issue in accelerating method of characteristics(MOC)transport calculations is in obtaining a completely equivalent low-order neutron transport or diffusion equation.Herein,an equivalent low-order angular flux ...The key issue in accelerating method of characteristics(MOC)transport calculations is in obtaining a completely equivalent low-order neutron transport or diffusion equation.Herein,an equivalent low-order angular flux nonlinear finite difference equation is proposed for MOC transport calculations.This method comprises three essential features:(1)the even parity discrete ordinates method is used to build a low-order angular flux nonlinear finite difference equation,and different boundary condition treatments are proposed;(2)two new defined factors,i.e.,the even parity discontinuity factor and odd parity discontinuity factor,are strictly defined to achieve equivalence between the low-order angular flux nonlinear finite difference method and MOC transport calculation;(3)the energy group and angle are decoupled to construct a symmetric linear system that is much easier to solve.The equivalence of this low-order angular flux nonlinear finite difference equation is analyzed for two-dimensional(2D)pin,2D assembly,and 2D C5G7 benchmark problems.Numerical results demonstrate that a low-order angular flux nonlinear finite difference equation that is completely equivalent to the pin-resolved transport equation is established.展开更多
We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition.A finite difference method with a predictor-corrector method is applied to solve t...We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition.A finite difference method with a predictor-corrector method is applied to solve the nonlinear potential flow equations in a two-dimensional (2D) tank.The irregular tank is mapped onto a fixed square domain with rectangular cells through a proper mapping function.A staggered mesh system is adopted in a 2D tank to capture the wave elevation of the transient fluid.The finite difference method with a predictor-corrector scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition.We present the numerical results of wave elevations from small to large amplitude waves with free oscillation motion,and the numerical solutions of wave elevation with horizontal excited motion.The beating period and the nonlinear phenomenon are very clear.The numerical solutions agree well with the analytical solutions and previously published results.展开更多
A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first ...A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.展开更多
A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing e...A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth- order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge- Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.展开更多
We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we pro...We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.展开更多
Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, t...Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, the numerical results were given by nonlinear finite element analysis. Results The numerical results of the shape of the active plastic sone, the angular distribution of stresseses and Clack tip opening displacement (CTOD) in the vicinity at the hp of the steadily groWing CraCk are determined. Conclusion The comparison between the numerical results given by the present wort and those given by analytic asymptotic analysis shows that the present work reached a very high accuracy.展开更多
In this work, we will derive numerical schemes for solving 3-coupled nonlinear Schrödinger equations using finite difference method and time splitting method combined with finite difference method. The result...In this work, we will derive numerical schemes for solving 3-coupled nonlinear Schrödinger equations using finite difference method and time splitting method combined with finite difference method. The resulting schemes are highly accurate, unconditionally stable. We use the exact single soliton solution and the conserved quantities to check the accuracy and the efficiency of the proposed schemes. Also, we use these methods to study the interaction dynamics of two solitons. It is found that both elastic and inelastic collision can take place under suitable parametric conditions. We have noticed that the inelastic collision of single solitons occurs in two different manners: enhancement or suppression of the amplitude.展开更多
The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF me...The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.展开更多
For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fract...For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.展开更多
Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with ...Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refraction. In this article, we will presuppose the Compact Finite Difference method with Runge-Kutta of order 4 (explicit) method, which is sixth-order and fourth-order in space and time respectively, to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations. Many methods used to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations are second order in time and need to use extra-technique to rise up to fourth-order as Richardson Extrapolation technique. The scheme obtained is immediately fourth-order in one step. This approach is a conditionally stable method. The conserved quantities and the exact single soliton solution indicate the competence and accuracy of the article’s suggestion schemes. Furthermore, the article discusses the two solitons interaction dynamics.展开更多
In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform...In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform and finite differences, are used in different subdomains. Our aim of this approach is to combine the flexibility of differential transform and the efficiency of finite differences. An explicit hybrid method for the transient response of inhomogeneous nonlinear partial differential equations is presented;applying finite difference scheme on the fixed grid size is used to approximate the space discretisation, whereas the differential transform method is used for time operator. Comparison of the efficiency of the different approaches is a very important aspect of this study. In our test cases, the hybrid approach is faster than the corresponding highly optimized finite difference method in two dimensional computations. We compared our hybrid approach’s results with the exact and/or numerical solutions of PDE which obtained from Adomian Decomposition Method. Results show that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations and get remarkable results in predicting the solutions of nonlinear initial value problems.展开更多
A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were ...A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were taken into account, and a .finite difference strength reserve method with partial safety factors based on the reliability method was developed and used to study the anti-slide stability of a concrete gravity dam on a complicated foundation with multiple slide planes. Possible slide paths were obtained, and the stability of the foundation with possible failure planes was evaluated through analysis of the stress distribution characteristics. The results reveal the mechanism and process of sliding due to weak structural planes and their deformations, and provide a reference for anti-slide stability analysis of gravity dams in complicated geological conditions.展开更多
In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solutio...In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solution is considered,which often generates a singular source and increases the difficulty of numerically solving the equation.The Crank-Nicolson technique,combined with the midpoint formula and the second-order convolution quadrature formula,is used for the time discretization.To increase the spatial accuracy,a fourth-order compact difference approximation,which is constructed by two compact difference operators,is adopted for spatial discretization.Then,the unconditional stability and convergence of the proposed scheme are strictly established with superlinear convergence accuracy in time and fourth-order accuracy in space.Finally,numerical experiments are given to support our theoretical results.展开更多
Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution ...Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.展开更多
The joint probability density fimction (PDF) of different structural responses is a very important topic in the stochastic response analysis of nonlinear structures. In this paper, the probability density evolution ...The joint probability density fimction (PDF) of different structural responses is a very important topic in the stochastic response analysis of nonlinear structures. In this paper, the probability density evolution method, which is successfully developed to capture the instantaneous PDF of an arbitrary single response of interest, is extended to evaluate the joint PDF of any two responses. A two-dimensional partial differential equation in terms of the joint PDF is established. The strategy of selecting representative points via the number theoretical method and sieved by a hyper-ellipsoid is outlined. A two-dimensional difference scheme is developed. The free vibration of an SDOF system is examined to verify the proposed method, and a flame structure exhibiting hysteresis subjected to stochastic ground motion is investigated. It is pointed out that the correlation of different responses results from the fact that randomness of different responses comes from the same set of basic random parameters involved. In other words, the essence of the probabilistic correlation is a physical correlation.展开更多
A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3...A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.展开更多
基金supported by the Key Laboratory of Road Construction Technology and Equipment(Chang’an University,No.300102253502)the Natural Science Foundation of Shandong Province of China(GrantNo.ZR2022YQ06)the Development Plan of Youth Innovation Team in Colleges and Universities of Shandong Province(Grant No.2022KJ140).
文摘In this study,we propose an efficient numerical framework to attain the solution of the extended Fisher-Kolmogorov(EFK)problem.The temporal derivative in the EFK equation is approximated by utilizing the Crank-Nicolson scheme.Following temporal discretization,the generalized finite difference method(GFDM)with supplementary nodes is utilized to address the nonlinear boundary value problems at each time node.These supplementary nodes are distributed along the boundary to match the number of boundary nodes.By incorporating supplementary nodes,the resulting nonlinear algebraic equations can effectively satisfy the governing equation and boundary conditions of the EFK equation.To demonstrate the efficacy of our approach,we present three numerical examples showcasing its performance in solving this nonlinear problem.
基金supported by the Yunnan Provincial Applied Basic Research Program of China(No. KKSY201207019)
文摘A three-dimensional (3D) predictor-corrector finite difference method for standing wave is developed. It is applied to solve the 3D nonlinear potential flow equa- tions with a free surface. The 3D irregular tank is mapped onto a fixed cubic tank through the proper coordinate transform schemes. The cubic tank is distributed by the staggered meshgrid, and the staggered meshgrid is used to denote the variables of the flow field. The predictor-corrector finite difference method is given to develop the difference equa- tions of the dynamic boundary equation and kinematic boundary equation. Experimental results show that, using the finite difference method of the predictor-corrector scheme, the numerical solutions agree well with the published results. The wave profiles of the standing wave with different amplitudes and wave lengths are studied. The numerical solutions are also analyzed and presented graphically.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金the National Key R&D Program of China(No.2018YFE0180900).
文摘The key issue in accelerating method of characteristics(MOC)transport calculations is in obtaining a completely equivalent low-order neutron transport or diffusion equation.Herein,an equivalent low-order angular flux nonlinear finite difference equation is proposed for MOC transport calculations.This method comprises three essential features:(1)the even parity discrete ordinates method is used to build a low-order angular flux nonlinear finite difference equation,and different boundary condition treatments are proposed;(2)two new defined factors,i.e.,the even parity discontinuity factor and odd parity discontinuity factor,are strictly defined to achieve equivalence between the low-order angular flux nonlinear finite difference method and MOC transport calculation;(3)the energy group and angle are decoupled to construct a symmetric linear system that is much easier to solve.The equivalence of this low-order angular flux nonlinear finite difference equation is analyzed for two-dimensional(2D)pin,2D assembly,and 2D C5G7 benchmark problems.Numerical results demonstrate that a low-order angular flux nonlinear finite difference equation that is completely equivalent to the pin-resolved transport equation is established.
文摘We develop a numerical solution algorithm of the nonlinear potential flow equations with the nonlinear free surface boundary condition.A finite difference method with a predictor-corrector method is applied to solve the nonlinear potential flow equations in a two-dimensional (2D) tank.The irregular tank is mapped onto a fixed square domain with rectangular cells through a proper mapping function.A staggered mesh system is adopted in a 2D tank to capture the wave elevation of the transient fluid.The finite difference method with a predictor-corrector scheme is applied to discretize the nonlinear dynamic boundary condition and nonlinear kinematic boundary condition.We present the numerical results of wave elevations from small to large amplitude waves with free oscillation motion,and the numerical solutions of wave elevation with horizontal excited motion.The beating period and the nonlinear phenomenon are very clear.The numerical solutions agree well with the analytical solutions and previously published results.
文摘A modified alternating direction implicit algorithm is proposed to solve the full-vectorial finite-difference beam propagation method formulation based on H fields. The cross-coupling terms are neglected in the first sub-step, but evaluated and doubly used in the second sub-step. The order of two sub-steps is reversed for each transverse magnetic field component so that the cross-coupling terms are always expressed in implicit form, thus the calculation is very efficient and stable. Moreover, an improved six-point finite-difference scheme with high accuracy independent of specific structures of waveguide is also constructed to approximate the cross-coupling terms along the transverse directions. The imaginary-distance procedure is used to assess the validity and utility of the present method. The field patterns and the normalized propagation constants of the fundamental mode for a buried rectangular waveguide and a rib waveguide are presented. Solutions are in excellent agreement with the benchmark results from the modal transverse resonance method.
基金supported by the National Natural Science Foundation of China(Grant No.51579034)the Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(Grant No.KLOCW1502)
文摘A total variation diminishing-weighted average flux (TVD-WAF)-based hybrid numerical scheme for the enhanced version of nonlinearly dispersive Boussinesq-type equations was developed. The one-dimensional governing equations were rewritten in the conservative form and then discretized on a uniform grid. The finite volume method was used to discretize the flux term while the remaining terms were approximated with the finite difference method. The second-order TVD-WAF method was employed in conjunction with the Harten-Lax-van Leer (HLL) Riemann solver to calculate the numerical flux, and the variables at the cell interface for the local Riemann problem were reconstructed via the fourth- order monotone upstream-centered scheme for conservation laws (MUSCL). The time marching scheme based on the third-order TVD Runge- Kutta method was used to obtain numerical solutions. The model was validated through a series of numerical tests, in which wave breaking and a moving shoreline were treated. The good agreement between the computed results, documented analytical solutions, and experimental data demonstrates the correct discretization of the governing equations and high accuracy of the proposed scheme, and also conforms the advantages of the proposed shock-capturing scheme for the enhanced version of the Boussinesq model, including the convenience in the treatment of wave breaking and moving shorelines and without the need for a numerical filter.
基金supported by the grant NSC 98-2115-M-194-010-MY2
文摘We consider a finite difference scheme for a nonlinear wave equation, whose solutions may lose their smoothness in finite time, i.e., blow up in finite time. In order to numerically reproduce blow-up solutions, we propose a rule for a time-stepping,which is a variant of what was successfully used in the case of nonlinear parabolic equations. A numerical blow-up time is defined and is proved to converge, under a certain hypothesis, to the real blow-up time as the grid size tends to zero.
文摘Aim To determine numerically the field characteristics in the vied at the tip of a place crack growing steadily in a power-law hardening material. Meteods. Methods on the Euler mode and small-scale yield assumption, the numerical results were given by nonlinear finite element analysis. Results The numerical results of the shape of the active plastic sone, the angular distribution of stresseses and Clack tip opening displacement (CTOD) in the vicinity at the hp of the steadily groWing CraCk are determined. Conclusion The comparison between the numerical results given by the present wort and those given by analytic asymptotic analysis shows that the present work reached a very high accuracy.
文摘In this work, we will derive numerical schemes for solving 3-coupled nonlinear Schrödinger equations using finite difference method and time splitting method combined with finite difference method. The resulting schemes are highly accurate, unconditionally stable. We use the exact single soliton solution and the conserved quantities to check the accuracy and the efficiency of the proposed schemes. Also, we use these methods to study the interaction dynamics of two solitons. It is found that both elastic and inelastic collision can take place under suitable parametric conditions. We have noticed that the inelastic collision of single solitons occurs in two different manners: enhancement or suppression of the amplitude.
文摘The compact implicit integration factor (cIIF) method is an efficient time discretization scheme for stiff nonlinear diffusion equations in two and three spatial dimensions. In the current work, we apply the cIIF method to some complex-valued nonlinear evolutionary equations such as the nonlinear SchrSdinger (NLS) equation and the complex Ginzburg-Landau (GL) equation. Detailed algorithm formulation and practical implementation of cIIF method are performed. The numerical results indicate that this method is very accurate and efficient.
基金Project supported by the Major State Basic Research Program of China (No.G1999032803)the National Tackling Key Problems Program (No.20050200069)the National Natural Science Foundation of China (Nos.10372052, 10271066)the Doctoral Foundation of Ministry of Education of China (No.20030422047).
文摘For the three-dimensional convection-dominated problem of dynamics of fluids in porous media, the second order upwind finite difference fractional steps schemes applicable to parallel arithmetic are put forward. Fractional steps techniques are needed to convert a multi-dimensional problem into a series of successive one-dimensional problems. Some techniques, such as calculus of variations, energy method, multiplicative commutation rule of difference operators, decomposition of high order difference operators, and the theory of prior estimates are adopted. Optimal order estimates are derived to determine the error in the second order approximate solution. These methods have already been applied to the numerical simulation of migration-accumulation of oil resources and predicting the consequences of seawater intrusion and protection projects.
文摘Models of the coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations submit various critical physical phenomena with a typical equation for optical fibres with linear refraction. In this article, we will presuppose the Compact Finite Difference method with Runge-Kutta of order 4 (explicit) method, which is sixth-order and fourth-order in space and time respectively, to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations. Many methods used to solve coupled nonlinear Schr<span style="white-space:nowrap;">ö</span>dinger equations are second order in time and need to use extra-technique to rise up to fourth-order as Richardson Extrapolation technique. The scheme obtained is immediately fourth-order in one step. This approach is a conditionally stable method. The conserved quantities and the exact single soliton solution indicate the competence and accuracy of the article’s suggestion schemes. Furthermore, the article discusses the two solitons interaction dynamics.
文摘In this paper, a hybrid method is introduced briefly to predict the behavior of the non-linear partial differential equations. The method is hybrid in the sense that different numerical methods, differential transform and finite differences, are used in different subdomains. Our aim of this approach is to combine the flexibility of differential transform and the efficiency of finite differences. An explicit hybrid method for the transient response of inhomogeneous nonlinear partial differential equations is presented;applying finite difference scheme on the fixed grid size is used to approximate the space discretisation, whereas the differential transform method is used for time operator. Comparison of the efficiency of the different approaches is a very important aspect of this study. In our test cases, the hybrid approach is faster than the corresponding highly optimized finite difference method in two dimensional computations. We compared our hybrid approach’s results with the exact and/or numerical solutions of PDE which obtained from Adomian Decomposition Method. Results show that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations and get remarkable results in predicting the solutions of nonlinear initial value problems.
基金supported by the Innovation Program for College Graduate of Jiangsu Province of 2007 (Grant No. CX07B_133Z)
文摘A key problem in gravity dam design is providing enough stability to prevent slide, and the difficulty increases if there are several weak structural planes in the dam foundation. Overload and material weakening were taken into account, and a .finite difference strength reserve method with partial safety factors based on the reliability method was developed and used to study the anti-slide stability of a concrete gravity dam on a complicated foundation with multiple slide planes. Possible slide paths were obtained, and the stability of the foundation with possible failure planes was evaluated through analysis of the stress distribution characteristics. The results reveal the mechanism and process of sliding due to weak structural planes and their deformations, and provide a reference for anti-slide stability analysis of gravity dams in complicated geological conditions.
基金supported by Natural Science Foundation of Jiangsu Province of China(Grant No.BK20201427)National Natural Science Foundation of China(Grant Nos.11701502 and 11871065)。
文摘In this paper,we present a linearized compact difference scheme for onedimensional time-space fractional nonlinear diffusion-wave equations with initial boundary value conditions.The initial singularity of the solution is considered,which often generates a singular source and increases the difficulty of numerically solving the equation.The Crank-Nicolson technique,combined with the midpoint formula and the second-order convolution quadrature formula,is used for the time discretization.To increase the spatial accuracy,a fourth-order compact difference approximation,which is constructed by two compact difference operators,is adopted for spatial discretization.Then,the unconditional stability and convergence of the proposed scheme are strictly established with superlinear convergence accuracy in time and fourth-order accuracy in space.Finally,numerical experiments are given to support our theoretical results.
基金Projects(51678547,41672296,51878634,51878185,41867034)supported by the National Natural Science Foundation of China。
文摘Following the assumptions proposed by MESRI and ROKHSAR,the one-dimensional nonlinear consolidation problem of soil under constant loading is studied by introducing continuous drainage boundary.The numerical solution is derived by using finite difference method and its correctness is assessed by comparing with existing analytical and numerical solutions.Based on the present solution,the effects of interface parameters,stress ratios(i.e.,final effective stress over initial effective stress,N_(σ))and the ratio c_(c)/c_(k)of compression index to permeability index on the consolidation behavior of soil are studied in detail.The results show that,the characteristics of one-dimensional nonlinear consolidation of soil are not only related to c_(c)/c_(k)and N_(σ),but also related to boundary conditions.In the engineering practice,the soil drainage rate of consolidation process can be designed by adjusting the values of interface parameters.
基金the National Natural Science Foundation of Chinafor Innovative Research Groups Under Grant No.50621062the National Natural Science Foundation of China forYoung Scholars Under Grant No.10402030
文摘The joint probability density fimction (PDF) of different structural responses is a very important topic in the stochastic response analysis of nonlinear structures. In this paper, the probability density evolution method, which is successfully developed to capture the instantaneous PDF of an arbitrary single response of interest, is extended to evaluate the joint PDF of any two responses. A two-dimensional partial differential equation in terms of the joint PDF is established. The strategy of selecting representative points via the number theoretical method and sieved by a hyper-ellipsoid is outlined. A two-dimensional difference scheme is developed. The free vibration of an SDOF system is examined to verify the proposed method, and a flame structure exhibiting hysteresis subjected to stochastic ground motion is investigated. It is pointed out that the correlation of different responses results from the fact that randomness of different responses comes from the same set of basic random parameters involved. In other words, the essence of the probabilistic correlation is a physical correlation.
基金supported by the Foundation for Development of Science and Technology of Shanghai (Grant No 022261002)
文摘A general numerical tool, based on thermal diffusion equation and full-vectorial eigen-mode equation, has been presented for the systematic analysis of graded index channel waveguide fabricated by ion exchange on Er^3+ doped glass. Finite difference method with full-vectorial formulation (FV-FDM) is applied to solving the full-vectorial modes of graded index channel waveguide for the first time. The coupled difference equations based on magnetic fields in FV-FDM are derived from the Taylor series expansion and accurate formulation of boundary conditions. Hybrid nature of vectorial guided modes for both pump (980 nm) and signal light (1550 nm) are demonstrated by the simulation. Results show that the fabrication parameters of ion exchange, such as channel opening width and time ratio of second step to first step in ion exchange, have large influence on the properties of waveguide. By optimizing the fabrication parameters, maintenance of monomode for signal light and improvement of the gain dynamics can be achieved in Er^3+ doped waveguide amplifier (EDWA) fabricated by ion exchange technique. This theoretical model is significant for the design and fabrication of EDWA with ion exchange technique. Furthermore, a single polarization EDWA, which operates at wavelength from 1528 nm to 1541 nm for HE polarization, is numerically designed.