A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under s...A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under second-order strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak, strong, strict converse and converse duality theorems are established for this pair of dual continuous programming problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.展开更多
A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order in...A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.展开更多
We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only contin...We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only continuous variables. We express conditions of exactness for MINLP problems and show how the exact penalty approach can be extended to constrained problems.展开更多
This paper presents a continuous method for solving binary quadratic programming problems. First, the original problem is converted into an equivalent continuous optimization problem by using NCP (Nonlinear Complement...This paper presents a continuous method for solving binary quadratic programming problems. First, the original problem is converted into an equivalent continuous optimization problem by using NCP (Nonlinear Complementarity Problem) function, which can be further carry on the smoothing processing by aggregate function. Therefore, the original combinatorial optimization problem could be transformed into a general differential nonlinear programming problem, which can be solved by mature optimization technique. Through some numerical experiments, the applicability, robustness, and solution quality of the approach are proved, which could be applied to large scale problems.展开更多
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS met...Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.展开更多
In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global conv...In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.展开更多
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradie...Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradient directions to ensure the descent property of the search directions. Global convergence of such a class of methods is discussed. It is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continuously differentiable function with a modification of the Curry-Altman's step-size rule and a bounded level set. Combining PR method with our new method, PR method is modified to have global convergence property.Numerical experiments show that the new methods are efficient by comparing with FR conjugate gradient method.展开更多
文摘A second-order Mond-Weir type dual problem is formulated for a class of continuous programming problems in which both objective and constraint functions contain support functions;hence it is nondifferentiable. Under second-order strict pseudoinvexity, second-order pseudoinvexity and second-order quasi-invexity assumptions on functionals, weak, strong, strict converse and converse duality theorems are established for this pair of dual continuous programming problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between the duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.
文摘A second-order dual problem is formulated for a class of continuous programming problem in which both objective and constrained functions contain support functions, hence it is nondifferentiable. Under second-order invexity and second-order pseudoinvexity, weak, strong and converse duality theorems are established for this pair of dual problems. Special cases are deduced and a pair of dual continuous problems with natural boundary values is constructed. A close relationship between duality results of our problems and those of the corresponding (static) nonlinear programming problem with support functions is briefly outlined.
文摘We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only continuous variables. We express conditions of exactness for MINLP problems and show how the exact penalty approach can be extended to constrained problems.
文摘This paper presents a continuous method for solving binary quadratic programming problems. First, the original problem is converted into an equivalent continuous optimization problem by using NCP (Nonlinear Complementarity Problem) function, which can be further carry on the smoothing processing by aggregate function. Therefore, the original combinatorial optimization problem could be transformed into a general differential nonlinear programming problem, which can be solved by mature optimization technique. Through some numerical experiments, the applicability, robustness, and solution quality of the approach are proved, which could be applied to large scale problems.
文摘Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameters in the search directions. In this note, by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991), a class of new restarting conjugate gradient methods is presented. Global convergences of the new method with two kinds of common line searches, are proved. Firstly, it is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continously dif ferentiable function with Curry-Altman's step size rule and a bounded level set. Secondly, by using comparing technique, some general convergence properties of the new method with other kind of step size rule are established. Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.
基金Supported by the National Natural Science Foundation of China(10571106) Supported by the Fundamental Research Funds for the Central Universities(10CX04044A)
文摘In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of FR method,a class of new restarting three terms conjugate gradient methods is presented.Global convergence properties of the new method with two kinds of common line searches are proved.
文摘Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradient directions to ensure the descent property of the search directions. Global convergence of such a class of methods is discussed. It is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continuously differentiable function with a modification of the Curry-Altman's step-size rule and a bounded level set. Combining PR method with our new method, PR method is modified to have global convergence property.Numerical experiments show that the new methods are efficient by comparing with FR conjugate gradient method.