Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.Howe...Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.展开更多
It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate ...It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate these nonlinear failure envelopes from triaxial test data. Currently only the power-type failure envelope has been studied with an established formal procedure for its determination from triaxial test data. In this paper, a simplified procedure is evolved for the development of four different types of nonlinear envelopes. These are of invaluable assistance in the evaluation of true factors of safety in problems of slope stability and correct computation of lateral earth pressure and bearing capacity. The use of the Mohr-Coulomb failure envelopes leads to an overestimation of the factors of safety and other geotechnical quantities.展开更多
This paper describes a method for estimating intrinsic and extrinsic parameters of a camera,including horizonal scale factor caused by imperfect match between computer image acquisition hardware and camera hardware,co...This paper describes a method for estimating intrinsic and extrinsic parameters of a camera,including horizonal scale factor caused by imperfect match between computer image acquisition hardware and camera hardware,coordinates of image center(c x ,c y) and lense radical distortion parameter k,which calculates extrinsic parameters by a tetrahedra pose estimation algorithm and then get all other parameters by nonlinear optimization in two steps,and simulations show this method is easy and reliable.展开更多
As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplif...As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplified empirical criteria that lead to a period shortening. The difference can be greatly decreased by using a structural identification methodology. In this study, an ambient vibration test was performed on four on-site reinforced concrete high-rise buildings, and the design results were compared with the PKPM models using corresponding finite element(FE) models. A diagonal strut model was used to simulate the behavior of the infill wall, and the identified modal parameters measured from the on-site test were employed to calibrate the parameters of the diagonal strut in the FE models. The SAP2000 models with calibrated elastic modulus were used to evaluate the seismic response in the elastic state. Based on the load-displacement relationship of the infill wall, nonlinear dynamic analysis models were built in PERFORM-3 D and calibrated using the measured modal periods. The analysis results revealed that the structural performance under small/large earthquake records were both strengthened by infill walls, and the contribution of infill walls should be considered for better accuracy in the design process.展开更多
Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure ...Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure both position and orientation at each pose,as well as the instability of identification in case of incomplete measurements,severely affects the application of traditional calibration methods.In this study,a kinematic calibration method with high measurement efficiency and robust identification is proposed to improve the kinematic accuracy of a five-axis hybrid machine tool.First,the configuration is introduced,and an error model is derived.Further,by investigating the mechanism error characteristics,a measurement scheme that only requires tool centre point position error measurement and one alignment operation is proposed.Subsequently,by analysing the effects of unmeasured degrees of freedom(DOFs)on other DOFs,an improved nonlinear least squares method based on virtual measurement values is proposed to achieve stable parameter identification in case of incomplete measurement,without introducing additional parameters.Finally,the proposed calibration method is verified through simulations and experiments.The proposed method can efficiently accomplish the kinematic calibration of the hybrid machine tool.The accuracy of the hybrid machine tool is significantly improved after calibration,satisfying actual aerospace machining requirements.展开更多
Bridges are one of the most vulnerable components of a highway transportation network system subjected to earthquake ground motions. Prediction of resilience and sustainability of bridge performance in a probabilistic...Bridges are one of the most vulnerable components of a highway transportation network system subjected to earthquake ground motions. Prediction of resilience and sustainability of bridge performance in a probabilistic manner provides valuable information for pre-event system upgrading and post-event functional recovery of the network. The current study integrates bridge seismic damageability information obtained through empirical, analytical and experimental procedures and quantifies threshold limits of bridge damage states consistent with the physical damage description given in HAZUS. Experimental data from a large-scale shaking table test are utilized for this purpose. This experiment was conducted at the University of Nevada, Reno, where a research team from the University of California, Irvine, participated. Observed experimental damage data are processed to identify and quantify bridge damage states in terms of rotational ductility at bridge column ends. In parallel, a mechanistic model for fragility curves is developed in such a way that the model can be calibrated against empirical fragility curves that have been constructed from damage data obtained during the 1994 Northridge earthquake. This calibration quantifies threshold values of bridge damage states and makes the analytical study consistent with damage data observed in past earthquakes. The mechanistic model is transportable and applicable to most types and sizes of bridges. Finally, calibrated damage state definitions are compared with that obtained using experimental findings. Comparison shows excellent consistency among results from analytical, empirical and experimental observations.展开更多
基金Project(61174002)supported by the National Natural Science Foundation of ChinaProject(200897)supported by the Foundation of National Excellent Doctoral Dissertation of PR China+1 种基金Project(NCET-10-0900)supported by the Program for New Century ExcellentTalents in University,ChinaProject(131061)supported by the Fok Ying Tung Education Foundation,China
文摘Single-axis rotation technique is often used in the marine laser inertial navigation system so as to modulate the constant biases of non-axial gyroscopes and accelerometers to attain better navigation performance.However,two significant accelerometer nonlinear errors need to be attacked to improve the modulation effect.Firstly,the asymmetry scale factor inaccuracy enlarges the errors of frequent zero-cross oscillating specific force measured by non-axial accelerometers.Secondly,the traditional linear model of accelerometers can hardly measure the continued or intermittent acceleration accurately.These two nonlinear errors degrade the high-precision specific force measurement and the calibration of nonlinear coefficients because triaxial accelerometers is urgent for the marine navigation.Based on the digital signal sampling property,the square coefficients and cross-coupling coefficients of accelerometers are considered.Meanwhile,the asymmetry scale factors are considered in the I-F conversion unit.Thus,a nonlinear model of specific force measurement is established compared to the linear model.Based on the three-axis turntable,the triaxial gyroscopes are utilized to measure the specific force observation for triaxial accelerometers.Considering the nonlinear combination,the standard calibration parameters and asymmetry factors are separately estimated by a two-step iterative identification procedure.Besides,an efficient specific force calculation model is approximately derived to reduce the real-time computation cost.Simulation results illustrate the sufficient estimation accuracy of nonlinear coefficients.The experiments demonstrate that the nonlinear model shows much higher accuracy than the linear model in both the gravimetry and sway navigation validations.
文摘It is now recognized that many geomaterials have nonlinear failure envelopes. This non-linearity is most marked at lower stress levels, the failure envelope being of quasi-parabolic shape. It is not easy to calibrate these nonlinear failure envelopes from triaxial test data. Currently only the power-type failure envelope has been studied with an established formal procedure for its determination from triaxial test data. In this paper, a simplified procedure is evolved for the development of four different types of nonlinear envelopes. These are of invaluable assistance in the evaluation of true factors of safety in problems of slope stability and correct computation of lateral earth pressure and bearing capacity. The use of the Mohr-Coulomb failure envelopes leads to an overestimation of the factors of safety and other geotechnical quantities.
文摘This paper describes a method for estimating intrinsic and extrinsic parameters of a camera,including horizonal scale factor caused by imperfect match between computer image acquisition hardware and camera hardware,coordinates of image center(c x ,c y) and lense radical distortion parameter k,which calculates extrinsic parameters by a tetrahedra pose estimation algorithm and then get all other parameters by nonlinear optimization in two steps,and simulations show this method is easy and reliable.
基金Supported by:National Key Research and Development Program of China under Grant Nos.2016YFC0701400 and 2016YFC0701308the Key Research and Development Program of Hunan Province under Grant No.2017SK2220the National Natural Science Foundation of China(NSFC)under Grant No.51878264
文摘As a type of nonstructural component, infill walls play a significant role in the seismic behavior of high-rise buildings. However, the stiffness of the infill wall is generally either ignored or considered by simplified empirical criteria that lead to a period shortening. The difference can be greatly decreased by using a structural identification methodology. In this study, an ambient vibration test was performed on four on-site reinforced concrete high-rise buildings, and the design results were compared with the PKPM models using corresponding finite element(FE) models. A diagonal strut model was used to simulate the behavior of the infill wall, and the identified modal parameters measured from the on-site test were employed to calibrate the parameters of the diagonal strut in the FE models. The SAP2000 models with calibrated elastic modulus were used to evaluate the seismic response in the elastic state. Based on the load-displacement relationship of the infill wall, nonlinear dynamic analysis models were built in PERFORM-3 D and calibrated using the measured modal periods. The analysis results revealed that the structural performance under small/large earthquake records were both strengthened by infill walls, and the contribution of infill walls should be considered for better accuracy in the design process.
基金supported by the National Natural Science Foundation of China(Nos.52275442 and 51975319)。
文摘Geometric error is the main factor affecting the machining accuracy of hybrid machine tools.Kinematic calibration is an effective way to improve the geometric accuracy of hybrid machine tools.The necessity to measure both position and orientation at each pose,as well as the instability of identification in case of incomplete measurements,severely affects the application of traditional calibration methods.In this study,a kinematic calibration method with high measurement efficiency and robust identification is proposed to improve the kinematic accuracy of a five-axis hybrid machine tool.First,the configuration is introduced,and an error model is derived.Further,by investigating the mechanism error characteristics,a measurement scheme that only requires tool centre point position error measurement and one alignment operation is proposed.Subsequently,by analysing the effects of unmeasured degrees of freedom(DOFs)on other DOFs,an improved nonlinear least squares method based on virtual measurement values is proposed to achieve stable parameter identification in case of incomplete measurement,without introducing additional parameters.Finally,the proposed calibration method is verified through simulations and experiments.The proposed method can efficiently accomplish the kinematic calibration of the hybrid machine tool.The accuracy of the hybrid machine tool is significantly improved after calibration,satisfying actual aerospace machining requirements.
基金Supported by:Multidisciplinary Center for Earthquake Engineering Research,Contract No.R271883
文摘Bridges are one of the most vulnerable components of a highway transportation network system subjected to earthquake ground motions. Prediction of resilience and sustainability of bridge performance in a probabilistic manner provides valuable information for pre-event system upgrading and post-event functional recovery of the network. The current study integrates bridge seismic damageability information obtained through empirical, analytical and experimental procedures and quantifies threshold limits of bridge damage states consistent with the physical damage description given in HAZUS. Experimental data from a large-scale shaking table test are utilized for this purpose. This experiment was conducted at the University of Nevada, Reno, where a research team from the University of California, Irvine, participated. Observed experimental damage data are processed to identify and quantify bridge damage states in terms of rotational ductility at bridge column ends. In parallel, a mechanistic model for fragility curves is developed in such a way that the model can be calibrated against empirical fragility curves that have been constructed from damage data obtained during the 1994 Northridge earthquake. This calibration quantifies threshold values of bridge damage states and makes the analytical study consistent with damage data observed in past earthquakes. The mechanistic model is transportable and applicable to most types and sizes of bridges. Finally, calibrated damage state definitions are compared with that obtained using experimental findings. Comparison shows excellent consistency among results from analytical, empirical and experimental observations.