In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of ...In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.展开更多
In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK ...In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.展开更多
In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients...In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients. The main purpose is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral sta- bility of the standing pulse solutions) and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction diffusion equations and the nonlinear scalar reaction diffusion equa- tions. The Evans functions for the standing pulse solutions are constructed explicitly.展开更多
基金Supported by the National Natural Science Foundation of China (40676016 and 40876010)the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-Q03-08)Construct Project of E-Institutes of Shanghai Municipal Education Commission (E03004)
文摘In this paper, the nonlinear reaction diffusion equation with boundary perturbation is considered. Using discussions on solvability, the perturbed solution of original problem is obtained, and the uniform validity of the solution is proved.
文摘In this paper,ETD3-Padéand ETD4-PadéGalerkin finite element methods are proposed and analyzed for nonlinear delayed convection-diffusion-reaction equations with Dirichlet boundary conditions.An ETD-based RK is used for time integration of the corresponding equation.To overcome a well-known difficulty of numerical instability associated with the computation of the exponential operator,the Padéapproach is used for such an exponential operator approximation,which in turn leads to the corresponding ETD-Padéschemes.An unconditional L^(2) numerical stability is proved for the proposed numerical schemes,under a global Lipshitz continuity assumption.In addition,optimal rate error estimates are provided,which gives the convergence order of O(k^(3)+h^(r))(ETD3-Padé)or O(k^(4)+h^(r))(ETD4-Padé)in the L^(2)norm,respectively.Numerical experiments are presented to demonstrate the robustness of the proposed numerical schemes.
基金supported by a Faculty Research Grant of Lehigh University
文摘In this paper, we consider a nonlinear system of reaction diffusion equa- tions arising from mathematical neuroscience and two nonlinear scalar reaction diffusion equations under some assumptions on their coefficients. The main purpose is to couple together linearized stability criterion (the equivalence of the nonlinear stability, the linear stability and the spectral sta- bility of the standing pulse solutions) and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction diffusion equations and the nonlinear scalar reaction diffusion equa- tions. The Evans functions for the standing pulse solutions are constructed explicitly.