The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear a...The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was ...A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.展开更多
Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepare...Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.展开更多
The operational parameters including the polarization controlling and the pump power in a nonlinear polarization rotation-based passively mode-locked fiber laser are studied in this paper.The carrier rate equations of...The operational parameters including the polarization controlling and the pump power in a nonlinear polarization rotation-based passively mode-locked fiber laser are studied in this paper.The carrier rate equations of the activated erbium-doped fiber are first employed together with the nonlinear Shro¨dinger equations to reveal the relation between the operational parameters and the output state of the passively mode-locked fiber laser.The numerical and experimental results demonstrate that the output state of the mode-locked laser varies with the polarization controlling and the pump power.The periodicity of the polarization controlling is observed.With given pump power,there exists a set of polarization controlling under which the ultra-short pulse can be generated.With given polarization controlling,the mode-locked state can be maintained generally except for some particular values of pump power.Three shapes of the output optical spectra from the fiber cavity can be identified when the pump power changes.The results in this paper provide a comprehensive insight into the operation of the nonlinear polarization rotation-based passively mode-locked fiber laser.展开更多
Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is ...Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is based on dynamic scanning for fixed-point-interference (DSFPI) of two fiber beams. The real part and complex value of the third-order susceptibility at the wavelength are also obtained from the measured Kerr coefficient and nonlinear-absorption coefficient reported elsewhere.展开更多
Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are der...Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.展开更多
We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linea...We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.展开更多
A new high nonlinear dispersion flattened photonic crystal fiber is proposed. This fiber has three-fold symmetry core. The doped region in the core and the big air-holes in the 1-st ring can make high nonlinearity in ...A new high nonlinear dispersion flattened photonic crystal fiber is proposed. This fiber has three-fold symmetry core. The doped region in the core and the big air-holes in the 1-st ring can make high nonlinearity in the PCF. And the small air-holes in the 1-st ring and the radial increasing diameters air-holes rings in cladding can be used to turn the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCF's structure parameters. A PCF with flattened dispersion is obtained. The dispersion is within ±0.8 ps·nm-1·km-1 from 1.50 μm to 1.62 μm. The nonlinear coefficient is about 12.645 6 W-1·km-1, the fundamental mode area is about 10.257 9 μm2 and the birefringence is about 3.086 96×10-5 at 1.55 μm. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal with high nonlinearities.展开更多
Highly nonlinear fibers(HNLFs) are crucial components for supercontinuum(SC) generation with laser solution.However, it is difficult to exactly estimate the structure of produced SC according to material parameters. T...Highly nonlinear fibers(HNLFs) are crucial components for supercontinuum(SC) generation with laser solution.However, it is difficult to exactly estimate the structure of produced SC according to material parameters. To give a guideline for choosing and using HNLFs for erbium-fiber-based optical applications, we demonstrate SC generation in five types of HNLFs pumped by 1.57-μm laser solitons. All five fibers output a SC exceeding 1000 nm. Three different SC formation processes were observed in the experiment. By comparing optical parameters of these fibers, we find the zero dispersion wavelength(ZDW) of fiber has an important influence on the SC structure and energy distribution for a given pump source.展开更多
A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtaine...A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.展开更多
We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intens...We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intensity profile from Lorentz to Gaussian and then to sech2 shapes by adjusting the intra-cavity polarization through a quarter-wave plate inside the fiber laser cavity. The laser pulses with different pulse shapes exhibit pulse-to-pulse amplitude fluctuation of -- 1.02%, while the sech2-shaped pulse train is provided with a more stable free-running repetition rate as a result of the stronger self-phase modulation in the fiber laser cavity than Lorentz- and Gaussian-shaped pulse trains.展开更多
We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-l...We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-long hollow-core fiber filled with neon for different initial pulse durations. The pulses are first coupled into gas-filled hollow-core fiber for spectrum broadening, then compressed by the optimal chirp compensation. The parabolic pulse possesses a shorter pulse duration, larger peak power, and cleaner wings than Gaussian pulse. The properties are useful for compressing the pulses and thus generating the high-energy, short-duration pulses.展开更多
Optical absorptive nonlinearity in Er doped optical fiber has been discussed and measured at the window wavelength 1.55 μm for optical communications firstly. It is proposed that the mechanism of this absorptive...Optical absorptive nonlinearity in Er doped optical fiber has been discussed and measured at the window wavelength 1.55 μm for optical communications firstly. It is proposed that the mechanism of this absorptive nonlinearity is the induced absorption. The first order nonlinear absorptive coefficient and the imaginary part and the complex value of the third order susceptibility at that wavelength are obtained from the measured absorptive nonlinearity.展开更多
By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a sle...By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state.展开更多
he influence of laser linewidth on optical fiber transmission systems has been investigated. The maximum transmission distances at different linewidths are first calculated in linear systems with various bit rates. Th...he influence of laser linewidth on optical fiber transmission systems has been investigated. The maximum transmission distances at different linewidths are first calculated in linear systems with various bit rates. Then it is found that SPM can significantly enhance the PMAM noise which severely deteriorates the performance of system with high optical power and large dispersion. In this case, the laser linewidth and optical power must be well controlled.展开更多
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In...By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably.展开更多
Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)system are post-compensated for by a new method of fiber nonlinearity post-compensation(FNPC).The FNPC lo...Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)system are post-compensated for by a new method of fiber nonlinearity post-compensation(FNPC).The FNPC located before the CO-OFDM receiver includes an optical phase conjugation(OPC)unit and a subsequent 80-km-high nonlinear fiber(HNLF)as a fiber nonlinearity compensator.The OPC unit is based on a four wave mixing effect in a semiconductor optical amplifier.The fiber nonlinearity impairments in the transmission link are post-compensated for after OPC by transmission through the HNLF with a large nonlinearity coefficient.Simulation results show that the nonlinear threshold(NLT)(for Q>10 dB)can be increased by about 2.5 dB and the maximum Q factor is increased by about 1.2 dB for the single−channel 40-Gb/s CO-OFDM system with periodic dispersion maps.In the 50-GHz channel spacing wavelength-division-multiplexing system,the NLT increases by 1.1 dB,equating to a 0.7 dB improvement for the maximum Q factor.展开更多
The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optic...The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optical fiber loop resonators may be used to make an all-optical fiber bistabillty device.The configuration,charecterictics and threshold of verious Er-doped fiber loop bistability devices have been calculated,analysised, and compared, and the design principle of those devices has been given.展开更多
From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive ...From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive nonlinear chiral fiber with joint action of chirality in linear and nonlinear ways. The generalized CNLSE shows a modu- lation of chirality to the effect of attenuation and nonlinearity compared with the case for a conventional fiber. Simulations based on the split-step beam propagation method reveal the role of nonlinearity with cooperation to chirality playing in the pulse evolution. By adjusting its strength the role of chirality in forming solitons is demonstrated for a given circularly polarized component. The application of nonlinear optical rotation is also discussed in an all-optical switch.展开更多
基金supported by the Na⁃tional Natural Science Foundation of China(No.11972016)the Natural Science Foundation of the Jiangsu Higher Educa⁃tion Institutions of China(No.23KJD460005)Scientif⁃ic Research Foundation for the Introduction of Talent in Nan⁃jing Vocational University of Industry Technology(No.YK21-04-02).
文摘The appearance and accumulation of internal impact damage seriously influence overall performance of carbon fiber reinforced plastic(CFRP).Thus,this study evaluates the change in impact damage number by using linear and nonlinear ultrasonic Lamb wave detection methods,and compares these two detection results.An ultrasonic wave simulation model for composite structure with impact damage is established using the finite element method,and the interaction between impact damage and the ultrasonic wave is simulated.Simulation results demonstrate that the ultrasonic amplitude linearly decreases,and the relative nonlinear parameter linearly increases in proportion to the impact number,respectively.The linear-fitting slope of nonlinear parameter is 0.38 per impact number at an input frequency of 1.0 MHz.It is far higher than that of the linear ultrasonic amplitude,which is only-0.12.However,with the increase of impact damage,the linear growth of nonlinear parameters mainly depends on the decrease in ultrasonic amplitude rather than the accumulation of second harmonic amplitude.In the linear ultrasonic amplitude detection,the linear fitting slope at 1.1 MHz is-0.14,which is lower than those at 0.9 MHz and 1.0 MHz.Meanwhile,in the nonlinear ultrasonic parameter detection,the linear fitting slope at 1.1 MHz is 0.92,which is higher than those at 0.9 MHz and 1.0 MHz.The results show that higher frequencies lead to greater attenuation of ultrasonic amplitude and a larger increase in nonlinear parameters,which can enhance the sensitivity of both linear and nonlinear ultrasonic detections.The accuracy of simulation results is demonstrated through the low-velocity impact and ultrasonic experiments.The results show that compared with nonlinear ultrasonic technology,the linear ultrasonic technology is more suitable for impact damage assessment of carbon fiber reinforced plastic because of its simpler detection process and higher sensitivity.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475029)
文摘A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.
基金Project supported by the National Natural Science Foundation of China(Grant No.11674036)the Beijing Youth Top-notch Talent Support Program,China(Grant No.2017000026833ZK08)the Fund of State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications,China(Grant Nos.IPOC2016ZT04 and IPOC2017ZZ05)
文摘Due to the remarkable carrier mobility and nonlinear characteristic, MoS2 is considered to be a powerful competitor as an effective optical modulated material in fiber lasers. In this paper, the MoS2 films are prepared by the chemical vapor deposition method to guarantee the high quality of the crystal lattice and uniform thickness. The transfer of the films to microfiber and the operation of gold plated films ensure there is no heat-resistant damage and anti-oxidation. The modulation depth of the prepared integrated microfiber-MoS2 saturable absorber is 11.07%. When the microfiber-MoS2 saturable absorber is used as a light modulator in the Q-switching fiber laser, the stable pulse train with a pulse duration of 888 ns at 1530.9 nm is obtained. The ultimate output power and pulse energy of output pulses are 18.8 mW and 88 nJ, respectively. The signal-to-noise ratio up to 60 dB indicates the good stability of the laser. This work demonstrates that the MoS2 saturable absorber prepared by the chemical vapor deposition method can serve as an effective nonlinear control device for the Q-switching fiber laser.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60972017,60978007,and 61177067)
文摘The operational parameters including the polarization controlling and the pump power in a nonlinear polarization rotation-based passively mode-locked fiber laser are studied in this paper.The carrier rate equations of the activated erbium-doped fiber are first employed together with the nonlinear Shro¨dinger equations to reveal the relation between the operational parameters and the output state of the passively mode-locked fiber laser.The numerical and experimental results demonstrate that the output state of the mode-locked laser varies with the polarization controlling and the pump power.The periodicity of the polarization controlling is observed.With given pump power,there exists a set of polarization controlling under which the ultra-short pulse can be generated.With given polarization controlling,the mode-locked state can be maintained generally except for some particular values of pump power.Three shapes of the output optical spectra from the fiber cavity can be identified when the pump power changes.The results in this paper provide a comprehensive insight into the operation of the nonlinear polarization rotation-based passively mode-locked fiber laser.
文摘Optical dispersive nonlinearities in Er-doped optical fiber are discussed and measured at the third window wavelength 1.55 μm for optical communications firstly. The experimental method, which is developed by us, is based on dynamic scanning for fixed-point-interference (DSFPI) of two fiber beams. The real part and complex value of the third-order susceptibility at the wavelength are also obtained from the measured Kerr coefficient and nonlinear-absorption coefficient reported elsewhere.
基金supported by the National Natural Science Foundation of China(Nos.11702251,12002316)。
文摘Based on the nonlinear constitutive equation,a piezoelectric semiconductor(PSC)fiber under axial loads and Ohmic contact boundary conditions is investigated.The analytical solutions of electromechanical fields are derived by the homotopy analysis method(HAM),indicating that the HAM is efficient for the nonlinear analysis of PSC fibers,along with a rapid rate of convergence.Furthermore,the nonlinear characteristics of electromechanical fields are discussed through numerical results.It is shown that the asymmetrical distribution of electromechanical fields is obvious under a symmetrical load,and the piezoelectric effect is weakened by an applied electric field.With the increase in the initial carrier concentration,the electric potential decreases,and owing to the screen-ing effect of electrons,the distribution of electromechanical fields tends to be symmetrical.
文摘We present a numerical investigation of the propagation and the switching of ultra-short pulses (100 fs) in a two-core nonlinear coupler of photonic crystal fibers constructed with periodically modulated the non-linearity fiber (PMNL-PFC). Our simulations are taking into account different amplitude and frequency modulations of the PMNL-PFC. A coupler for coupling whose length is Lc = 1.8 cm, the transmission characteristics, the compression factor, the crosstalk (Xtalk) and extinction ratio (Xratio) levels of the first order solitons were studied for low to high pump energies considering 2Lc. By an analysis on the reference channel (channel 2), it is observed that at low modulation frequencies an increase occurs in the switching power increasing transmission efficiency. For high modulation frequencies, the transmitted energy efficiency loses. The switching pulses are stronger for low frequency and high amplitude modulation. The Xtalk is a function of the measurement made on the secondary channel (channel 1). It was observed that this unwanted high-frequency energy increases to lessen the measure of the amplitude modulation. In summary, we have demonstrated that introduction of a non-linearity profile takes the periodically modulated PMNL-PFC to strong variations at transmission efficiency, Xtalk, Xratio a function of frequency and modulation amplitude and the input power.
基金National Basic Research Program of China(973 Program)(2003CB314907) National Science Foundation ofCouncil of China(90604026 ,60310174) Postdoctoral Science Foundation of China(20060400059)
文摘A new high nonlinear dispersion flattened photonic crystal fiber is proposed. This fiber has three-fold symmetry core. The doped region in the core and the big air-holes in the 1-st ring can make high nonlinearity in the PCF. And the small air-holes in the 1-st ring and the radial increasing diameters air-holes rings in cladding can be used to turn the dispersion properties of the PCF. We can achieve the optimized optical properties by carefully selecting the PCF's structure parameters. A PCF with flattened dispersion is obtained. The dispersion is within ±0.8 ps·nm-1·km-1 from 1.50 μm to 1.62 μm. The nonlinear coefficient is about 12.645 6 W-1·km-1, the fundamental mode area is about 10.257 9 μm2 and the birefringence is about 3.086 96×10-5 at 1.55 μm. This work may be useful for effective design and fabrication of dispersion flattened photonic crystal with high nonlinearities.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.91536217 and 61825505)
文摘Highly nonlinear fibers(HNLFs) are crucial components for supercontinuum(SC) generation with laser solution.However, it is difficult to exactly estimate the structure of produced SC according to material parameters. To give a guideline for choosing and using HNLFs for erbium-fiber-based optical applications, we demonstrate SC generation in five types of HNLFs pumped by 1.57-μm laser solitons. All five fibers output a SC exceeding 1000 nm. Three different SC formation processes were observed in the experiment. By comparing optical parameters of these fibers, we find the zero dispersion wavelength(ZDW) of fiber has an important influence on the SC structure and energy distribution for a given pump source.
基金supported by the National Natural Science Foundation of China under Grant No.60377021partially supported by Program for New Century Excellent Talents in University under Grant No. NCET-07-0152Sichuan Scientific Funds for Young Researchers under Grant No. 08ZQ026-012.
文摘A novel nonlinear mirror structure which can increase the optical signal-to-noise ratio of a distributed fiber Raman temperature sensor is proposed, and 6 dB improvement of the optical signal-to-noise ratio is obtained. With the assistance of the nonlinear mirror, we demonstrate that the spatial resolution of the sensor is improved from 3 m to 1 m, and the temperature accuracy is improved from ±0.6℃ to ±0.2℃. The theoretical analysis and the experimental data are in good agreement.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11274115 and 10990101)the National Key Project for Basic Research of China(Grant No.2011CB808105)+2 种基金the National Key Scientific Instrument Project,China(Grant No.2012YQ150092)the Natural Science Foundation of Shanghai,China(Grant No.11ZR1410900)the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.2014Z10269011)
文摘We report on controllable pulse shaping in a Yb-doped stretched-pulse fiber laser followed by a high-power chirped pulse amplifier. We demonstrate that the pulses after an extra-cavity grating pair change their intensity profile from Lorentz to Gaussian and then to sech2 shapes by adjusting the intra-cavity polarization through a quarter-wave plate inside the fiber laser cavity. The laser pulses with different pulse shapes exhibit pulse-to-pulse amplitude fluctuation of -- 1.02%, while the sech2-shaped pulse train is provided with a more stable free-running repetition rate as a result of the stronger self-phase modulation in the fiber laser cavity than Lorentz- and Gaussian-shaped pulse trains.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61221064,61078037,11127901,and 11134010)the National Basic Research Program of China(Grant No.2011CB808101)+2 种基金the Funds from the Commission of Science and Technology of Shanghai,China(Grant No.12dz1100700)the Natural Science Foundation of Shanghai,China(Grant No.13ZR1414800)the International S&T Cooperation Program of China(Grant No.2011DFA11300)
文摘We study theoretically the spectral intensity evolutions of the femtosecond Gaussian and parabolic pulses with different initial pulse energies and compare the nonlinear compressions of these pulses based on a meter-long hollow-core fiber filled with neon for different initial pulse durations. The pulses are first coupled into gas-filled hollow-core fiber for spectrum broadening, then compressed by the optimal chirp compensation. The parabolic pulse possesses a shorter pulse duration, larger peak power, and cleaner wings than Gaussian pulse. The properties are useful for compressing the pulses and thus generating the high-energy, short-duration pulses.
文摘Optical absorptive nonlinearity in Er doped optical fiber has been discussed and measured at the window wavelength 1.55 μm for optical communications firstly. It is proposed that the mechanism of this absorptive nonlinearity is the induced absorption. The first order nonlinear absorptive coefficient and the imaginary part and the complex value of the third order susceptibility at that wavelength are obtained from the measured absorptive nonlinearity.
基金Project supported by the National High Technology Research and Development Program(No. 2009AA032303-2)
文摘By taking into account the effect of the bi-modulus for tension and compression of the fiber reinforced polymer (FRP) sheet in the reinforcement layer, a general mathematical model for the nonlinear bending of a slender timber beam strengthened with the FRP sheet is established under the hypothesis of the large deflection deformation of the beam. Nonlinear governing equations of the second order effect of the beam bending are derived. The nonlinear stability of a simply-supported slender timber column strengthened with the FRP sheet is then investigated. An expression of the critical load of the simply-supported FRP-strengthened timber beam is obtained. The existence of postbuckling solution of the timber column is proved theoretically, and an asymptotic analytical solution of the postbuckling state in the vicinity of the critical load is obtained using the perturbation method. Parameters are studied showing that the FRP reinforcement layer has great influence on the critical load of the timber column, and has little influence on the dimensionless postbuckling state.
文摘he influence of laser linewidth on optical fiber transmission systems has been investigated. The maximum transmission distances at different linewidths are first calculated in linear systems with various bit rates. Then it is found that SPM can significantly enhance the PMAM noise which severely deteriorates the performance of system with high optical power and large dispersion. In this case, the laser linewidth and optical power must be well controlled.
基金the Science Foundation for Young Scientists of Hubei Province Educational Committee of China (B200514003)
文摘By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably.
基金by the National High-Tech Research and Development Program under Grant No 2009AA01A345the National Basic Research Program under Grant No2011CB302702the National Natural Science Foundation of China under Grant No 60932004.
文摘Fiber nonlinearity impairments in a 40-Gb/s coherent optical orthogonal frequency division multiplexing(CO-OFDM)system are post-compensated for by a new method of fiber nonlinearity post-compensation(FNPC).The FNPC located before the CO-OFDM receiver includes an optical phase conjugation(OPC)unit and a subsequent 80-km-high nonlinear fiber(HNLF)as a fiber nonlinearity compensator.The OPC unit is based on a four wave mixing effect in a semiconductor optical amplifier.The fiber nonlinearity impairments in the transmission link are post-compensated for after OPC by transmission through the HNLF with a large nonlinearity coefficient.Simulation results show that the nonlinear threshold(NLT)(for Q>10 dB)can be increased by about 2.5 dB and the maximum Q factor is increased by about 1.2 dB for the single−channel 40-Gb/s CO-OFDM system with periodic dispersion maps.In the 50-GHz channel spacing wavelength-division-multiplexing system,the NLT increases by 1.1 dB,equating to a 0.7 dB improvement for the maximum Q factor.
文摘The linear and nonlinear charecteristics of verious optical riber loop resonators have been processed uniformly using transmission matrix method. It is pointed that in nonlinear operation condition each of those optical fiber loop resonators may be used to make an all-optical fiber bistabillty device.The configuration,charecterictics and threshold of verious Er-doped fiber loop bistability devices have been calculated,analysised, and compared, and the design principle of those devices has been given.
基金Supported by the National Natural Science Foundation of China under Grant No 60977032the Program for Innovation Research of Science of Harbin Institute of Technology(PIRS-HIT)under Grant No T201407
文摘From Maxwell's equations and Post's formalism, a generalized chiral nonlinear Schr6dinger equation (CNLSE) is obtained for the nonlinear chiral fiber. This equation governs light transmission through a dispersive nonlinear chiral fiber with joint action of chirality in linear and nonlinear ways. The generalized CNLSE shows a modu- lation of chirality to the effect of attenuation and nonlinearity compared with the case for a conventional fiber. Simulations based on the split-step beam propagation method reveal the role of nonlinearity with cooperation to chirality playing in the pulse evolution. By adjusting its strength the role of chirality in forming solitons is demonstrated for a given circularly polarized component. The application of nonlinear optical rotation is also discussed in an all-optical switch.