The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated. The influence of the aircraft climbing angle on the cracked rotor system response is...The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated. The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasi-periodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.展开更多
将非线性输出频率响应函数(nonlinear output frequency response function,NOFRF)引用到裂纹转子的故障诊断中,提出基于NOFRF的转子裂纹的故障诊断方法。该方法通过辨识不同位置、不同深度的裂纹转子的NOFRF值,对裂纹故障进行诊断,得...将非线性输出频率响应函数(nonlinear output frequency response function,NOFRF)引用到裂纹转子的故障诊断中,提出基于NOFRF的转子裂纹的故障诊断方法。该方法通过辨识不同位置、不同深度的裂纹转子的NOFRF值,对裂纹故障进行诊断,得到一些有价值的结论。实验结果表明,系统各阶NOFRF值对转子裂纹不同位置和深度的变化相当敏感,可有效辨识裂纹故障的严重程度。展开更多
文摘The nonlinear dynamics of a cracked rotor system in an aircraft maneuvering with constant velocity or acceleration was investigated. The influence of the aircraft climbing angle on the cracked rotor system response is of particular interest and the results show that the climbing angle can markedly affect the parameter range for bifurcation, for quasi-periodic response and for chaotic response as well as for system stability. Aircraft acceleration is also shown to significantly affect the nonlinear behavior of the cracked rotor system, illustrating the possibility for on-line rotor crack fault diagnosis.
文摘将非线性输出频率响应函数(nonlinear output frequency response function,NOFRF)引用到裂纹转子的故障诊断中,提出基于NOFRF的转子裂纹的故障诊断方法。该方法通过辨识不同位置、不同深度的裂纹转子的NOFRF值,对裂纹故障进行诊断,得到一些有价值的结论。实验结果表明,系统各阶NOFRF值对转子裂纹不同位置和深度的变化相当敏感,可有效辨识裂纹故障的严重程度。