期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Adaptive Gain Tuning Rule for Nonlinear Sliding-mode Speed Control of Encoderless Three-phase Permanent Magnet Assisted Synchronous Motor 被引量:1
1
作者 Ghada A.Abdel Aziz Rehan Ali Khan 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第3期301-310,共10页
In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous r... In this paper, an adaptive gain tuning rule is designed for the nonlinear sliding mode speed control(NSMSC) in order to enhance the dynamic performance and the robustness of the permanent magnet assisted synchronous reluctance motor(PMa-Syn RM) with considering the parameter uncertainties. A nonlinear sliding surface whose parameters are altering with time is designed at first. The proposed NSMSC can minimize the settling time without any overshoot via utilizing a low damping ratio at starting along with a high damping ratio as the output approaches the target set-point. In addition, it eliminates the problem of the singularity with the upper bound of an uncertain term that is hard to be measured practically as well as ensures a rapid convergence in finite time, through employing a simple adaptation law. Moreover, for enhancing the system efficiency throughout the constant torque region, the control system utilizes the maximum torque per ampere technique. The nonlinear sliding surface stability is assured via employing Lyapunov stability theory. Furthermore, a simple sliding mode estimator is employed for estimating the system uncertainties. The stability analysis and the experimental results indicate the effectiveness along with feasibility of the proposed speed estimation and the NSMSC approach for a 1.1-k W PMa-Syn RM under different speed references, electrical and mechanical parameters disparities, and load disturbance conditions. 展开更多
关键词 Permanent magnet assisted synchronous reluctance motor nonlinear sliding mode speed control Speed estimation Parameter uncertainties sliding mode estimator
下载PDF
Decoupled nonsingular terminal sliding mode control for affine nonlinear systems 被引量:1
2
作者 Yueneng Yang Ye Yan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期192-200,共9页
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p... A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC). 展开更多
关键词 nonlinear control feedback linearization terminal sliding mode control nonsingular affine nonlinear system.
下载PDF
Nonlinear Derivative and Integral Sliding Control for Tracked Vehicle Steering with Hydrostatic Drive 被引量:1
3
作者 Changsong Zheng Yichun Chen Ran Jia 《Journal of Beijing Institute of Technology》 EI CAS 2020年第3期283-293,共11页
In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes... In the steering process of tracked vehicle with hydrostatic drive,the motion and resistance states of the vehicle are always of uncertain and nonlinear characteristics,and these states may undergoe large-scale changes.Therefore,it is significant to enhance the steering stability of tracked vehicle with hydrostatic drive to meet the need of future battlefield.In this paper,a sliding mode control algorithm is proposed and applied to achieve desired yaw rates.The speed controller and the yaw rate controller are designed through the kinematics and dynamics analysis.In addition,the nonlinear derivative and integral sliding mode control algorithm is designed,which is supposed to efficiently reduce the integration saturation and the disturbances from the unsmooth road surfaces through a conditional integrator approach.Moreover,it improves the response speed of the system and reduces the chattering by the derivative controller.The hydrostatic tracked vehicle module is modeled with a multi-body dynamic software RecurDyn and the steering control strategy module is modeled by MATLAB/Simulink.The co-simulation results of the whole model show that the control strategy can improve the vehicle steering response speed and also ensure a smooth control output with small chattering and strong robustness. 展开更多
关键词 tracked vehicle hydrostatic drive steer control nonlinear derivative and integral sliding mode control
下载PDF
Observer-based adaptive sliding mode backstepping output-feedback DSC for spin-stabilized canard-controlled projectiles 被引量:5
4
作者 Yuanchuan SHEN Jianqiao YU +3 位作者 Guanchen LUO Xiaolin AI Zhenyue JIA Fangzheng CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1115-1126,共12页
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded u... This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach. 展开更多
关键词 Backstepping Dynamic surface control technique nonlinear systems Observers sliding mode control Spin-stabilized canard controlled projectiles
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部