The response of subsoil strata subjected to seismic excitations plays an important role in governing the response of the overlying superstructures at any site. Ground response analysis(GRA) helps to assess the influen...The response of subsoil strata subjected to seismic excitations plays an important role in governing the response of the overlying superstructures at any site. Ground response analysis(GRA) helps to assess the influence of soil characteristics on the propagating seismic stress waves from the bedrock level to the ground surface during an earthquake. For the northeastern region of India, located in the highest seismic zone in the country, conducting an extensive GRA study is of prime importance. Conventionally, most of the GRA studies are carried out using the equivalent linear method, which, being a simplistic approach, cannot capture the nonlinear behavior of soil during seismic shaking. This paper presents the outcomes of a one-dimensional effective stress based nonlinear GRA conducted for Guwahati city(located in northeast India) incorporating the non-Masing load/unload/reload characteristics. The various ground response parameters evaluated from this study help in assessing the ground shaking, soil amplification, and site responses expected in this region. 2D contour maps, which are representative of the distribution of some of these parameters throughout Guwahati city, are also developed. The results presented herein can serve as guidelines for the design of foundations and superstructures in this region.展开更多
The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the...The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F and the average site amplification in different frequency bands of 1.0-5.0 Hz, 5.0-10.0 Hz and 1.0-10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance DAspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold ofPGA 〉 300 cm/s^2 or PGV 〉 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.展开更多
土壤非线性电离效应是影响接地体散流能力的重要因素。为了研究冲击电流作用下土壤非线性电离对接地体泄流能力的影响规律,以单根水平接地体为研究对象,采用三维时域有限差分(3-D FDTD)数值分析方法,基于L-D(Liew and Darveniza)提出的...土壤非线性电离效应是影响接地体散流能力的重要因素。为了研究冲击电流作用下土壤非线性电离对接地体泄流能力的影响规律,以单根水平接地体为研究对象,采用三维时域有限差分(3-D FDTD)数值分析方法,基于L-D(Liew and Darveniza)提出的土壤非线性电离效应模型;根据电磁场理论,建立了水平接地体仿真模型,然后从暂态冲击接地电阻、最大暂态地电位升(GPR)和电导率分布等接地体特性参数角度来研究水平接地体冲击散流的物理过程。研究表明:1雷电流在接地体及其周围土壤的散流是复杂的电磁暂态过程,接地体的散流极不均匀;2土壤非线性电离效应减小暂态冲击接地电阻,而且考虑了土壤非线性电离效应的最大暂态地电位升要远远低于未考虑土壤非线性电离的情况;3接地体端部附近土壤电离区域大于中部附近电离区域,具有明显的端部效应。展开更多
文摘The response of subsoil strata subjected to seismic excitations plays an important role in governing the response of the overlying superstructures at any site. Ground response analysis(GRA) helps to assess the influence of soil characteristics on the propagating seismic stress waves from the bedrock level to the ground surface during an earthquake. For the northeastern region of India, located in the highest seismic zone in the country, conducting an extensive GRA study is of prime importance. Conventionally, most of the GRA studies are carried out using the equivalent linear method, which, being a simplistic approach, cannot capture the nonlinear behavior of soil during seismic shaking. This paper presents the outcomes of a one-dimensional effective stress based nonlinear GRA conducted for Guwahati city(located in northeast India) incorporating the non-Masing load/unload/reload characteristics. The various ground response parameters evaluated from this study help in assessing the ground shaking, soil amplification, and site responses expected in this region. 2D contour maps, which are representative of the distribution of some of these parameters throughout Guwahati city, are also developed. The results presented herein can serve as guidelines for the design of foundations and superstructures in this region.
基金Nonprofit Industry Research Project of CEA under Grant No. 201208014National Natural Science Fund No. 51278473Environmental Protection Research Fund for Public Interest No. 201209040
文摘The generalized inversion of S-wave amplitude spectra from the free-field strong motion recordings of the China National Strong Motion Observation Network System (NSMONS) are used to evaluate the site effects in the Wenchuan area. In this regard, a total of 602 recordings from 96 aftershocks of the Wenchuan earthquake with magnitudes of M3.7-M6.5 were selected as a dataset. These recordings were obtained from 28 stations at a hypocenter distance ranging from 30 km to 150 km. The inversion results have been verified as reliable by comparing the site response at station 62WUD using the Generalized Inversion Technique (GIT) and the Standard Spectral Ratio method (SSR). For all 28 stations, the site predominant frequency F and the average site amplification in different frequency bands of 1.0-5.0 Hz, 5.0-10.0 Hz and 1.0-10.0 Hz have been calculated based on the inversion results. Compared with the results from the horizontal-to-vertical spectral ratio (HVSR) method, it shows that the HVSR method can reasonably estimate the site predominant frequency but underestimates the site amplification. The linear fitting between the average site amplification for each frequency band and the V20 (the average uppermost-20 m shear wave velocity) shows good correlation. A distance measurement called the asperity distance DAspt is proposed to reasonably characterize the source-to-site distance for large earthquakes. Finally, the inversed site response is used to identify the soil nonlinearity in the main shock and aftershocks of Wenchuan earthquake. In ten of the 28 stations analyzed in the main shock, the soil behaved nonlinearly, where the ground motion level is apparently beyond a threshold ofPGA 〉 300 cm/s^2 or PGV 〉 20 cm/s, and only one station coded 51SFB has evidence of soil nonlinear behavior in the aftershocks.
文摘土壤非线性电离效应是影响接地体散流能力的重要因素。为了研究冲击电流作用下土壤非线性电离对接地体泄流能力的影响规律,以单根水平接地体为研究对象,采用三维时域有限差分(3-D FDTD)数值分析方法,基于L-D(Liew and Darveniza)提出的土壤非线性电离效应模型;根据电磁场理论,建立了水平接地体仿真模型,然后从暂态冲击接地电阻、最大暂态地电位升(GPR)和电导率分布等接地体特性参数角度来研究水平接地体冲击散流的物理过程。研究表明:1雷电流在接地体及其周围土壤的散流是复杂的电磁暂态过程,接地体的散流极不均匀;2土壤非线性电离效应减小暂态冲击接地电阻,而且考虑了土壤非线性电离效应的最大暂态地电位升要远远低于未考虑土壤非线性电离的情况;3接地体端部附近土壤电离区域大于中部附近电离区域,具有明显的端部效应。