A wavelet collocation method with nonlinear auto companding is proposed for behavioral modeling of switched current circuits.The companding function is automatically constructed according to the initial error distri...A wavelet collocation method with nonlinear auto companding is proposed for behavioral modeling of switched current circuits.The companding function is automatically constructed according to the initial error distribution obtained through approximating the input output function of the SI circuit by conventional wavelet collocation method.In practical applications,the proposed method is a general purpose approach,by which both the small signal effect and the large signal effect are modeled in a unified formulation to ease the process of modeling and simulation.Compared with the published modeling approaches,the proposed nonlinear auto companding method works more efficiently not only in controlling the error distribution but also in reducing the modeling errors.To demonstrate the promising features of the proposed method,several SI circuits are employed as examples to be modeled and simulated.展开更多
This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in ...This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.展开更多
The stabilization of a class of switched nonlinear systems is investigated in the paper. The systems concerned are of (generalized) switched Byrnes-Isidori canonical form, which has all switched models in (generali...The stabilization of a class of switched nonlinear systems is investigated in the paper. The systems concerned are of (generalized) switched Byrnes-Isidori canonical form, which has all switched models in (generalized) Byrnes- Isidori canonical form. First, a stability result of switched systems is obtained. Then it is used to solve the stabilization problem of the switched nonlinear control systems. In addition, necessary and sufficient conditions are obtained for a switched affine nonlinear system to be feedback equivalent to (generalized) switched Byrnes-Isidori canonical systems are presented. Finally, as an application the stability of switched lorenz systems is investigated.展开更多
The problem of H∞ stability analysis and control synthesis of switched systems with delayed states under arb/trary switchirg laws is considered. By means of Lyapunov function and linear matrix inequality tools, suffi...The problem of H∞ stability analysis and control synthesis of switched systems with delayed states under arb/trary switchirg laws is considered. By means of Lyapunov function and linear matrix inequality tools, sufficient ctmdition of H∞ stability is presented in terms of linear matrix inequalities. Furthermore, the robust H∞ control synthesis via state feedback and output feedack is studied. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.展开更多
This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surfa...This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
The problem of globally quadratic stability of switched nonlinear systems in block-triangular form under arbitrary switching is addressed. Under the assumption that all block-subsystems are zero input-to-state stable,...The problem of globally quadratic stability of switched nonlinear systems in block-triangular form under arbitrary switching is addressed. Under the assumption that all block-subsystems are zero input-to-state stable, a su?cient condition for the problem to be solvable ispresented. A common Lyapunov function is constructed iteratively by using the Lyapunov functionsof block-subsystems.展开更多
This paper is concerned with the H-infinity control problem for a class of cascade switched nonlinear systems. Each switched system in this class is composed of a zero-mput asymptotically stable nonlinear part, which ...This paper is concerned with the H-infinity control problem for a class of cascade switched nonlinear systems. Each switched system in this class is composed of a zero-mput asymptotically stable nonlinear part, which is also a switched system, and a linearizable part which is controllable. Conditions under which the H-infinity control problem is solvable under arbitrary switching law and under some designed switching law are derived respectively. The nonlinear state feedback and switching law are designed. We exploit the structural characteristics of the switched nonlinear systems to construct common Lyapunov functions for arbitrary switching and to find a single Lyapunov function for designed switching law. The proposed methods do not rely on the solutions of Hamilton-Jacobi inequalities.展开更多
This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, mul...This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.展开更多
For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using th...For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using the BIBO stable domain.Aiming at the effect of parameter uncertainties,a switching strategy and each state feedback sub - controller design are stated to guarantee the H - infinity performance of the whole switched system based on La Salle invariant principle.展开更多
This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dep...This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.展开更多
The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation o...The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.展开更多
The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the trackin...The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.展开更多
Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP i...Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.展开更多
A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient condit...A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.展开更多
This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution...This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.展开更多
This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropria...This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.展开更多
In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonli...In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.展开更多
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r...For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.展开更多
In order to improve the reliability in torque calculation of SRM,an accurate nonlinear torque model regresses by recursive robust least squares support vector regression(RR-LSSVR)is proposed in this paper.The model is...In order to improve the reliability in torque calculation of SRM,an accurate nonlinear torque model regresses by recursive robust least squares support vector regression(RR-LSSVR)is proposed in this paper.The model is in terms of a segmented-rotor switched reluctance motor(SSRM).The characteristics of the SSRM is introduced to show its nonlinear characteristics both in magnetic and torque.Then,its mathematic model is established,and an accurate inductance measurement method and a torque calculation method are presented.After this,the principle of the RR-LSSVR and why it can adjust weights according to errors are described.The model used the RR-LSSVR algorithm shows an outstanding capability in accuracy and quickness compared with other algorithms.Finally,to further validate the accuracy of the proposed model in practical application,simulation and experiment are designed based on a 16/10 SSRM.展开更多
文摘A wavelet collocation method with nonlinear auto companding is proposed for behavioral modeling of switched current circuits.The companding function is automatically constructed according to the initial error distribution obtained through approximating the input output function of the SI circuit by conventional wavelet collocation method.In practical applications,the proposed method is a general purpose approach,by which both the small signal effect and the large signal effect are modeled in a unified formulation to ease the process of modeling and simulation.Compared with the published modeling approaches,the proposed nonlinear auto companding method works more efficiently not only in controlling the error distribution but also in reducing the modeling errors.To demonstrate the promising features of the proposed method,several SI circuits are employed as examples to be modeled and simulated.
基金supported by the National Natural Science Foundation of China(61673198)the Provincial Natural Science Foundation of Liaoning Province(20180550473)
文摘This paper will investigate global exponential stability analysis for a class of switched positive nonlinear systems under minimum dwell time switching, whose nonlinear functions for each subsystem are constrained in a sector field by two odd symmetric piecewise linear functions and whose system matrices for each subsystem are Metzler. A class of multiple time-varying Lyapunov functions is constructed to obtain the computable sufficient conditions on the stability of such switched nonlinear systems within the framework of minimum dwell time switching.All present conditions can be solved by linear/nonlinear programming techniques. An example is provided to demonstrate the effectiveness of the proposed result.
基金This work is partly supported by the National Natural Science Foundation of China (No. 60274010, 60221301, 60334040, 60228003).
文摘The stabilization of a class of switched nonlinear systems is investigated in the paper. The systems concerned are of (generalized) switched Byrnes-Isidori canonical form, which has all switched models in (generalized) Byrnes- Isidori canonical form. First, a stability result of switched systems is obtained. Then it is used to solve the stabilization problem of the switched nonlinear control systems. In addition, necessary and sufficient conditions are obtained for a switched affine nonlinear system to be feedback equivalent to (generalized) switched Byrnes-Isidori canonical systems are presented. Finally, as an application the stability of switched lorenz systems is investigated.
基金supported by the National“863”Foundation of China under Grant 2007AA04Z193
文摘The problem of H∞ stability analysis and control synthesis of switched systems with delayed states under arb/trary switchirg laws is considered. By means of Lyapunov function and linear matrix inequality tools, sufficient ctmdition of H∞ stability is presented in terms of linear matrix inequalities. Furthermore, the robust H∞ control synthesis via state feedback and output feedack is studied. Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.60874024,60574013)
文摘This paper develops a new method to deal with the robust H-infinity control problem for a class of uncertain switched nonlinear systems by using integral sliding mode control.A robust H-infinity integral sliding surface is constructed such that the sliding mode is robust stable with a prescribed disturbance attenuation level γ for a class of switching signals with average dwell time.Furthermore,variable structure controllers are designed to maintain the state of switched system on the sliding surface from the initial time.A numerical example is given to illustrate the effectiveness of the proposed method.
基金Supported by Natural Science Foundation of P.R.China(60274009),the Foundation for Docto(r2a)lSpecial Branch by the Ministry of Eduction of P.R.China(20020145007),and Natural Science Foundation ofLiaoning Province(20032020)
文摘The problem of globally quadratic stability of switched nonlinear systems in block-triangular form under arbitrary switching is addressed. Under the assumption that all block-subsystems are zero input-to-state stable, a su?cient condition for the problem to be solvable ispresented. A common Lyapunov function is constructed iteratively by using the Lyapunov functionsof block-subsystems.
基金Supported by National Natural Science Foundation of China (60874024, 90816028) and the Specialized Research and for the Doctoral Program of Higher Education of China (200801450019)
文摘This paper is concerned with the H-infinity control problem for a class of cascade switched nonlinear systems. Each switched system in this class is composed of a zero-mput asymptotically stable nonlinear part, which is also a switched system, and a linearizable part which is controllable. Conditions under which the H-infinity control problem is solvable under arbitrary switching law and under some designed switching law are derived respectively. The nonlinear state feedback and switching law are designed. We exploit the structural characteristics of the switched nonlinear systems to construct common Lyapunov functions for arbitrary switching and to find a single Lyapunov function for designed switching law. The proposed methods do not rely on the solutions of Hamilton-Jacobi inequalities.
基金supported by the National Basic Research Program of China (No.2007CB714006)
文摘This paper concerns the observer-based adaptive control problem of uncertain time-delay switched systems with stuck actuator faults. Under the case where the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and a suitable switching logic is incorporated to ensure the closed-loop system stability and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained in terms of linear matrix inequalities based on piecewise Lyapunov stability theory. On the other hand, adaptive laws for on-line updating of some of the controller parameters are also designed to compensate the effect of stuck failures. Finally, simulation results for reference [1] model show that the design is feasible and efficient.
基金partially supported by the Natural Science Foundation of China under Grant No. 60764001the West Light Talent Project of The Chinese Academy of Sciences(2007414)the Indraught Talents Foundation of Guizhou University(2007)
文摘For a class of switched nonlinear systems, the BIBO stable domain is introduced in this paper. The robust H - infinity control problem for switched nonlinear systems with parameter uncertainty is investigated using the BIBO stable domain.Aiming at the effect of parameter uncertainties,a switching strategy and each state feedback sub - controller design are stated to guarantee the H - infinity performance of the whole switched system based on La Salle invariant principle.
文摘This paper investigates the finite-time H<sub>∞</sub> control problem of switched nonlinear systems via state-dependent switching and state feedback control. Unlike the existing approach based on time-dependent switching strategy, in which the switching instants must be given in advance, the state-dependent switching strategy is used to design switching signals. Based on multiple Lyapunov-like functions method, several criteria for switched nonlinear systems to be finite-time H<sub>∞</sub> control are derived. Finally, a numerical example with simulation results is provided to show the validity of the conclusions.
文摘The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.
基金This project was supported by the National Natural Science Foundation of China (60074001) and the Natural ScienceFoundation of Shandong Province (Y2000G02)
文摘The PD-type iterative learning control design of a class of affine nonlinear time-delay systems with external disturbances is considered. Sufficient conditions guaranteeing the convergence of the n-norm of the tracking error are derived. It is shown that the system outputs can be guaranteed to converge to desired trajectories in the absence of external disturbances and output measurement noises. And in the presence of state disturbances and measurement noises, the tracking error will be bounded uniformly. A numerical simulation example is presented to validate the effectiveness of the proposed scheme.
基金Supported by the National Natural Science Foundation of China (No. 60025307, No. 60234010) the National 863 Project(No. 2001AA413130,2002AA412420)+1 种基金 Research Fund for the Doctoral Program of Higher Education (No. 20020003063) the National 973 Program
文摘Based on a nonlinear state predictor (NSP) and a strong tracking filter (STF), a sensor fault tolerant generic model control (FTGMC) approach for a class of nonlinear time-delay processes is proposed. First, the NSP is introduced, and it is used to extend the conventional generic model control (GMC) to nonlinear processes with large input time-delay. Then the STF is adopted to estimate process states and sensor bias, the estimated sensor bias is used to drive a fault detection logic. When a sensor fault is detected, the estimated process states by the STF will be used to construct the process output to form a 'soft sensor', which is then used by the NSP (instead of the real outputs) to provide state predictors. These procedures constitute an active fault tolerant control scheme. Finally, simulation results of a three-tank-system demonstrate the effectiveness of the proposed approach.
基金This work is supported by the National Natural Science Foundation of China (No. 60528007, 10372002, 60274001, 60304003), the National KeyBasic Research and Development Program (No. 2002CB312200).
文摘A switched system approach is proposed to model networked control systems (NCSs) with communication constraints. This enables us to apply the rich theory of switched systems to analyzing such NCSs. Sufficient conditions are presented on the stabilization of NCSs. Stabilizing state/output feedback controllers can be constructed by using the feasible solutions of some linear matrix inequalities (LMIs). The merit of our proposed approach is that the behavior of the NCSs can be studied by considering switched system without augmenting the system. A simulation example is worked out to illustrate the effectiveness of the proposed approach.
基金Project supported by the National Natural Science Foundation of China (Grant No 60178025) and the Key Laboratory of 0ptoelectronics Information Technical Science of Ministry of Education, Institute of Modern 0ptics, Nankai University, China.
文摘This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.
基金supported partially by the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(NJZY13279)
文摘This paper proposes a high-speed nonsingular terminal switched sliding mode control(HNT-SSMC) strategy for robot manipulators. The proposed approach enhances the control system performance by switching among appropriate sliding mode controllers according to different control demands in different regions of the state space. It is shown that the highspeed nonsingular terminal switched sliding mode(HNT-SSM)which is the representation of different control demands and enforced by the HNT-SSMC has the property of global highspeed convergence compared with the nonsingular fast terminal sliding mode(NFTSM), and provides the global non-singularity.The simulation study of an application example is carried out to validate the effectiveness of the proposed strategy.
基金supported by National Natural Science Foundation of China (No.60674056)Outstanding Youth Funds of Liaoning Province (No.2005219001)Educational Department of Liaoning Province (No.2006R29,No.2007T80)
文摘In this paper, a new adaptive fuzzy backstepping control approach is developed for a class of nonlinear systems with unknown time-delay and unmeasured states. Using fuzzy logic systems to approximate the unknown nonlinear functions, a fuzzy state observer is designed for estimating the unmeasured states. On the basis of the state observer and applying the backstepping technique, an adaptive fuzzy observer control approach is developed. The main features of the proposed adaptive fuzzy control approach not only guarantees that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded, but also contain less adaptation parameters to be updated on-line. Finally, simulation results are provided to show the effectiveness of the proposed approach.
基金This project was supported by the National Natural Science Foundation of China (69974028 60374015)
文摘For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example.
基金This work was supported by the National Natural Science Foundation of China under Project 51875261the Natural Science Foundation of Jiangsu Province of China under Projects BK20180046 and BK20170071the“Qinglan project”of Jiangsu Province,and the Key Project of Natural Science Foundation of Jiangsu Higher Education Institutions under Project 17KJA460005.
文摘In order to improve the reliability in torque calculation of SRM,an accurate nonlinear torque model regresses by recursive robust least squares support vector regression(RR-LSSVR)is proposed in this paper.The model is in terms of a segmented-rotor switched reluctance motor(SSRM).The characteristics of the SSRM is introduced to show its nonlinear characteristics both in magnetic and torque.Then,its mathematic model is established,and an accurate inductance measurement method and a torque calculation method are presented.After this,the principle of the RR-LSSVR and why it can adjust weights according to errors are described.The model used the RR-LSSVR algorithm shows an outstanding capability in accuracy and quickness compared with other algorithms.Finally,to further validate the accuracy of the proposed model in practical application,simulation and experiment are designed based on a 16/10 SSRM.