期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
REGULARITY OF SOLUTIONS TO NONLINEAR TIME FRACTIONAL DIFFERENTIAL EQUATION
1
作者 Mirjana STOJANOVI 《Acta Mathematica Scientia》 SCIE CSCD 2013年第6期1721-1735,共15页
We find an upper viscosity solution and give a proof of the existence-uniqueness in the space C^∞(t∈(0,∞);H2^s+2(R^n))∩C^0(t∈[0,∞);H^s(R^n)),s∈R,to the nonlinear time fractional equation of distribu... We find an upper viscosity solution and give a proof of the existence-uniqueness in the space C^∞(t∈(0,∞);H2^s+2(R^n))∩C^0(t∈[0,∞);H^s(R^n)),s∈R,to the nonlinear time fractional equation of distributed order with spatial Laplace operator subject to the Cauchy conditions ∫0^2p(β)D*^βu(x,t)dβ=△xu(x,t)+f(t,u(t,x)),t≥0,x∈R^n,u(0,x)=φ(x),ut(0,x)=ψ(x),(0.1) where △xis the spatial Laplace operator,D*^β is the operator of fractional differentiation in the Caputo sense and the force term F satisfies the Assumption 1 on the regularity and growth. For the weight function we take a positive-linear combination of delta distributions concentrated at points of interval (0, 2), i.e., p(β) =m∑k=1bkδ(β-βk),0〈βk〈2,bk〉0,k=1,2,…,m.The regularity of the solution is established in the framework of the space C^∞(t∈(0,∞);C^∞(R^n))∩C^0(t∈[0,∞);C^∞(R^n))when the initial data belong to the Sobolev space H2^8(R^n),s∈R. 展开更多
关键词 nonlinear time-fractional equations of distributed order existence-uniqueness theorems viscosity solutions regularity result
下载PDF
A Hybrided Trapezoidal-Difference Scheme for Nonlinear Time-Fractional Fourth-Order Advection-Dispersion Equation Based on Chebyshev Spectral Collocation Method
2
作者 Shichao Yi Hongguang Sun 《Advances in Applied Mathematics and Mechanics》 SCIE 2019年第1期197-215,共19页
In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fract... In this paper,we firstly present a novel simple method based on a Picard integral type formulation for the nonlinear multi-dimensional variable coefficient fourthorder advection-dispersion equation with the time fractional derivative order a2(1,2).A new unknown function v(x,t)=■u(x,t)/■t is introduced and u(x,t)is recovered using the trapezoidal formula.As a result of the variable v(x,t)are introduced in each time step,the constraints of traditional plans considering the non-integer time situation of u(x,t)is no longer considered.The stability and solvability are proved with detailed proofs and the precise describe of error estimates is derived.Further,Chebyshev spectral collocation method supports accurate and efficient variable coefficient model with variable coefficients.Several numerical results are obtained and analyzed in multi-dimensional spatial domains and numerical convergence order are consistent with the theoretical value 3-a order for different a under infinite norm. 展开更多
关键词 Trapezoidal-difference scheme time-fractional order variable coefficient fourth-order advection-dispersion equation Chebyshev spectral collocation method NONLINEARITY
原文传递
非线性时间分数阶空气动力学方程的格子Boltzmann研究
3
作者 王慧敏 陈恒佳 《长春师范大学学报》 2024年第10期1-5,共5页
针对非线性时间分数阶空气动力学方程,提出了一种新的格子Boltzmann模型.通过使用Chapman-Enskog展开和时间多尺度展开技术,得到了一系列不同时间尺度上的系列偏微分方程.选择合适的平衡态分布函数的矩,恢复出宏观方程,数值模拟出非线... 针对非线性时间分数阶空气动力学方程,提出了一种新的格子Boltzmann模型.通过使用Chapman-Enskog展开和时间多尺度展开技术,得到了一系列不同时间尺度上的系列偏微分方程.选择合适的平衡态分布函数的矩,恢复出宏观方程,数值模拟出非线性时间分数阶空气动力学方程的解.数值实验表明,格子Boltzmann方法是研究非线性时间分数阶空气动力学方程的有效工具. 展开更多
关键词 格子Boltzmann方法 非线性时间分数阶空气动力学方程 数值模拟
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部