In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm i...In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.展开更多
This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterization...This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.展开更多
In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of...In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.展开更多
In the paper, the approximate solution for the two-dimensional linear and nonlinear Volterra-Fredholm integral equation (V-FIE) with singular kernel by utilizing the combined Laplace-Adomian decomposition method (LADM...In the paper, the approximate solution for the two-dimensional linear and nonlinear Volterra-Fredholm integral equation (V-FIE) with singular kernel by utilizing the combined Laplace-Adomian decomposition method (LADM) was studied. This technique is a convergent series from easily computable components. Four examples are exhibited, when the kernel takes Carleman and logarithmic forms. Numerical results uncover that the method is efficient and high accurate.展开更多
In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturba...In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturbation method (LHPM)). Here we consider the V-FIE with Cauchy kernel. Solved examples illustrate that the proposed strategy is powerful, effective and very simple.展开更多
A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoot...A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.展开更多
The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The...The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The fourth order uniform accuracy of the scheme is proved. A numerical experiment demonstrates the effectiveness of the method.展开更多
应用匹配渐近展开法研究了一类非线性Fr积分方程。εω(x,ε)+h(x,ε)=integral from n=0 to 1(f(x,s,ω(s,ε)ε)ds,0≤x≤1(其中ε为正的小参数,0<ε≤1)的奇异摄动问题。假设出现边界层以及其他适当的条件,导出了方程解的一致有...应用匹配渐近展开法研究了一类非线性Fr积分方程。εω(x,ε)+h(x,ε)=integral from n=0 to 1(f(x,s,ω(s,ε)ε)ds,0≤x≤1(其中ε为正的小参数,0<ε≤1)的奇异摄动问题。假设出现边界层以及其他适当的条件,导出了方程解的一致有效的渐近展开式,证明了解的存在性和唯一性,并对余项作出渐近估计,推广了Lange(1988),Olmstead(1989)关于线性Fr积分方程的奇异摄动问题以及Hoppensteadt(1983)关于Volterra积分方程的奇异摄动问题的结果。展开更多
文摘In this paper,the approximate solutions for two different type of two-dimensional nonlinear integral equations:two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method.To do this,these two-dimensional nonlinear integral equations are transformed into a system of nonlinear algebraic equations in matrix form.By solving these systems,unknown coefficients are obtained.Also,some theorems are proved for convergence analysis.Some numerical examples are presented and results are compared with the analytical solution to demonstrate the validity and applicability of the proposed method.
基金The work of the author has been supported by the Deutache Forschungsgemeinschaft(DFG) under Grant Ho 1846/1-1
文摘This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.
文摘In this paper, one class of nonlinear singular integral equation is discussed through Lagrange interpolation method. We research the connections between numerical solutions of the equations and chaos in the process of solving by iterative method.
文摘In the paper, the approximate solution for the two-dimensional linear and nonlinear Volterra-Fredholm integral equation (V-FIE) with singular kernel by utilizing the combined Laplace-Adomian decomposition method (LADM) was studied. This technique is a convergent series from easily computable components. Four examples are exhibited, when the kernel takes Carleman and logarithmic forms. Numerical results uncover that the method is efficient and high accurate.
文摘In this article, we present approximate solution of the two-dimensional singular nonlinear mixed Volterra-Fredholm integral equations (V-FIE), which is deduced by using new strategy (combined Laplace homotopy perturbation method (LHPM)). Here we consider the V-FIE with Cauchy kernel. Solved examples illustrate that the proposed strategy is powerful, effective and very simple.
文摘A nonlinear problem of mean-square approximation of a real nonnegative continuous function with respect to two variables by the modulus of double Fourier integral dependent on two real parameters with use of the smoothing functional is studied. Finding the optimal solutions of this problem is reduced to solution of the Hammerstein type two-dimensional nonlinear integral equation. The numerical algorithms to find the branching lines and branching-off solutions of this equation are constructed and justified. Numerical examples are presented.
文摘The nonlinear singular perturbation problem is solved numerically on nonequidistant meshes which are dense in the boundary layers. The method presented is based on the numerical solution of integral equations [1]. The fourth order uniform accuracy of the scheme is proved. A numerical experiment demonstrates the effectiveness of the method.
文摘应用匹配渐近展开法研究了一类非线性Fr积分方程。εω(x,ε)+h(x,ε)=integral from n=0 to 1(f(x,s,ω(s,ε)ε)ds,0≤x≤1(其中ε为正的小参数,0<ε≤1)的奇异摄动问题。假设出现边界层以及其他适当的条件,导出了方程解的一致有效的渐近展开式,证明了解的存在性和唯一性,并对余项作出渐近估计,推广了Lange(1988),Olmstead(1989)关于线性Fr积分方程的奇异摄动问题以及Hoppensteadt(1983)关于Volterra积分方程的奇异摄动问题的结果。