Through the research into the characteristics of 7-DoF high dimensional nonlinear dynamics of a vehicle on bumpy road, the periodic movement and chaotic behavior of the vehicle were found.The methods of nonlinear freq...Through the research into the characteristics of 7-DoF high dimensional nonlinear dynamics of a vehicle on bumpy road, the periodic movement and chaotic behavior of the vehicle were found.The methods of nonlinear frequency response analysis, global bifurcation, frequency chart and Poincaré maps were used simultaneously to derive strange super chaotic attractor.According to Lyapunov exponents calculated by Gram-Schmidt method, the unstable region was compartmentalized and the super chaotic characteristic of ...展开更多
This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition techn...This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.展开更多
In this paper, a new practical model for real heavy vehicle structure is developed to investigate dynamic responses under steering/acceleration or braking maneuvers. The generalized six DoFs (degrees-of-freedom) non...In this paper, a new practical model for real heavy vehicle structure is developed to investigate dynamic responses under steering/acceleration or braking maneuvers. The generalized six DoFs (degrees-of-freedom) nonlinear vehicle model M1 including longitudinal, lateral, yaw, vertical, roll and pitch dynamics is validated using the measured data reported in different studies. This model takes the CG (center of gravity) of sprung mass, unsprung mass and total vehicle mass into account. Based on this model, the effects of the inertia parameters on the vehicle dynamic responses are investigated for more comprehensive assessments of the model structure. Another nonlinear vehicle model 342 derived from M1 which assumes that the vehicle has a single CG as reported in literature is also developed. The dynamic responses of the vehicle model Mj are compared with those of the model M2 to demonstrate the performance potential of the proposed nonlinear model. The results of dynamic responses with the nonlinear vehicle model MI suggest that the model could offer considerable potential in realizing enhanced ride and handling performance, as well as improved roll and pitch properties in a flexible manner.展开更多
This paper mainly studies the comparison of the global vehicle models and the effects of the inertial parameters due to the center of gravity(CG)positions when we consider that the vehicle has only one CG.This paper p...This paper mainly studies the comparison of the global vehicle models and the effects of the inertial parameters due to the center of gravity(CG)positions when we consider that the vehicle has only one CG.This paper proposes a new nonlinear model vehicle model which considers both unsprung mass and sprung mass CG.The CG positions and inertial parameters effects are analyzed in terms of the published vehicle dynamics models.To this end,two 14 degree-of-freedom(DOF)vehicle models are developed and compared to investigate the vehicle dynamics responses due to the different CG height and inertial parameters concepts.The proposed models describe simultaneously the vehicle motion in longitudinal,lateral and vertical directions as well as roll,pitch and yaw of the vehicle about corresponding axis.The passive and active moments and the forces acting on the vehicle are also described and they are considered as a direct consequence of acceleration,braking and steering maneuvers.The proposed model M1 takes both the CG of sprung mass,unsprung mass and total vehicle mass into account.The second model M2 assumes that the vehicle is one solid body which has a single CG as reported in majority of literature.The two vehicle models are compared and analyzed to evaluate vehicle ride and handling dynamic responses under braking/acceleration and cornering maneuvers.Simulation results show that the proposed model M1 could offer analytically some abilities and driving performances,as well as improved roll and pitch in a very flexible manner compared to the second model M2.展开更多
文摘Through the research into the characteristics of 7-DoF high dimensional nonlinear dynamics of a vehicle on bumpy road, the periodic movement and chaotic behavior of the vehicle were found.The methods of nonlinear frequency response analysis, global bifurcation, frequency chart and Poincaré maps were used simultaneously to derive strange super chaotic attractor.According to Lyapunov exponents calculated by Gram-Schmidt method, the unstable region was compartmentalized and the super chaotic characteristic of ...
文摘This paper presents a flight control design for an unmanned aerial vehicle (UAV) using a nonlinear autoregressive moving average (NARMA-L2) neural network based feedback linearization and output redefinition technique. The UAV investigated is non- minimum phase. The output redefinition technique is used in such a way that the resulting system to be inverted is a minimum phase system. The NARMA-L2 neural network is trained off-line for forward dynamics of the UAV model with redefined output and is then inverted to force the real output to approximately track a command input. Simulation results show that the proposed approaches have good performance.
文摘In this paper, a new practical model for real heavy vehicle structure is developed to investigate dynamic responses under steering/acceleration or braking maneuvers. The generalized six DoFs (degrees-of-freedom) nonlinear vehicle model M1 including longitudinal, lateral, yaw, vertical, roll and pitch dynamics is validated using the measured data reported in different studies. This model takes the CG (center of gravity) of sprung mass, unsprung mass and total vehicle mass into account. Based on this model, the effects of the inertia parameters on the vehicle dynamic responses are investigated for more comprehensive assessments of the model structure. Another nonlinear vehicle model 342 derived from M1 which assumes that the vehicle has a single CG as reported in literature is also developed. The dynamic responses of the vehicle model Mj are compared with those of the model M2 to demonstrate the performance potential of the proposed nonlinear model. The results of dynamic responses with the nonlinear vehicle model MI suggest that the model could offer considerable potential in realizing enhanced ride and handling performance, as well as improved roll and pitch properties in a flexible manner.
文摘This paper mainly studies the comparison of the global vehicle models and the effects of the inertial parameters due to the center of gravity(CG)positions when we consider that the vehicle has only one CG.This paper proposes a new nonlinear model vehicle model which considers both unsprung mass and sprung mass CG.The CG positions and inertial parameters effects are analyzed in terms of the published vehicle dynamics models.To this end,two 14 degree-of-freedom(DOF)vehicle models are developed and compared to investigate the vehicle dynamics responses due to the different CG height and inertial parameters concepts.The proposed models describe simultaneously the vehicle motion in longitudinal,lateral and vertical directions as well as roll,pitch and yaw of the vehicle about corresponding axis.The passive and active moments and the forces acting on the vehicle are also described and they are considered as a direct consequence of acceleration,braking and steering maneuvers.The proposed model M1 takes both the CG of sprung mass,unsprung mass and total vehicle mass into account.The second model M2 assumes that the vehicle is one solid body which has a single CG as reported in majority of literature.The two vehicle models are compared and analyzed to evaluate vehicle ride and handling dynamic responses under braking/acceleration and cornering maneuvers.Simulation results show that the proposed model M1 could offer analytically some abilities and driving performances,as well as improved roll and pitch in a very flexible manner compared to the second model M2.