期刊文献+
共找到762篇文章
< 1 2 39 >
每页显示 20 50 100
A Brief Summary of Finite Element Method Applications to Nonlinear Wave-structure Interactions
1
作者 王赤忠 吴国雄 《Journal of Marine Science and Application》 2011年第2期127-138,共12页
We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. ... We review recent advances in the finite element method (FEM) simulations of interactions between waves and structures. Our focus is on the potential theory with the fully nonlinear or second-order boundary condition. The present paper has six sections. A review of previous work on interactions between waves and ocean structures is presented in Section one. Section two gives the mathematical formulation. In Section three, the finite element discretization, mesh generation and the finite element linear system solution methods are described. Section four presents numerical methods including time marching schemes, computation of velocity, remeshing and smoothing techniques and numerical radiation conditions. The application of the FEM to the wave-structure interactions are presented in Section five followed by the concluding remarks in Section six. 展开更多
关键词 finite element method (FEM) mesh generation nonlinear water waves wave-structure interactions
下载PDF
Nonlinear Time History Analysis for the Different Column Orientations under Seismic Wave Synthetic Approach
2
作者 Mo Shi Peng Wang +1 位作者 Xiaoyan Xu Yeol Choi 《World Journal of Engineering and Technology》 2024年第3期587-616,共30页
The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving ... The significant impact of earthquakes on human lives and the built environment underscores the extensive human and economic losses caused by structural collapses. Over the years, researchers have focused on improving seismic design to mitigate earthquake-induced damages and enhance structural performance. In this study, a specific reinforced concrete (RC) frame structure at Kyungpook National University, designed for educational purposes, is analyzed as a representative case. Utilizing SAP 2000, the research conducts a nonlinear time history analysis to assess the structural performance under seismic conditions. The primary objective is to evaluate the influence of different column section designs, while maintaining identical column section areas, on structural behavior. The study employs two distinct seismic waves from Abeno (ABN) and Takatori (TKT) for the analysis, comparing the structural performance under varying seismic conditions. Key aspects examined include displacement, base shear force, base moment, joint radians, and layer displacement angle. This research is anticipated to serve as a valuable reference for seismic restraint reinforcement work on RC buildings, enriching the methods used for evaluating structures through nonlinear time history analysis based on the synthetic seismic wave approach. 展开更多
关键词 nonlinear Time History Analysis nonlinear Dynamic Analysis Seismic wave Synthetic Seismic Restraint RC Frame structure Column Orientation
下载PDF
Fully nonlinear modeling of radiated waves generated by floating flared structures 被引量:3
3
作者 Bin-Zhen Zhou De-Zhi Ning +1 位作者 Bin Teng Ming Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期667-680,共14页
The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element ... The nonlinear radiated waves generated by a structure in forced motion, are simulated numerically based on the potential theory. A fully nonlinear numerical model is developed by using a higher-order boundary element method (HOBEM). In this model, the instantaneous body position and the transient free surface are updated at each time step. A Lagrangian technique is employed as the time marching scheme on the free surface. The mesh regridding and interpolation methods are adopted to deal with the possible numerical instability. Several auxiliary functions are proposed to calculate the wave loads indirectly, instead of directly predicting the temporal derivative of the velocity potential. Numerical experiments are carried out to simulate the heave motions of a submerged sphere in infinite water depth, the heave and pitch motions of a truncated flared cylinder in finite depth. The results are verified against the published numerical results to ensure the effectiveness of the proposed model. Moreover, a series of higher harmonic waves and force components are obtained by the Fourier transformation to investigate the nonlinear effect of oscillation frequency. The difference among fully nonlinear, body-nonlinear and linear results is analyzed. It is found that the nonlinearity due to free surface and body surface has significant influences on the numerical results of the radiated waves and forces. 展开更多
关键词 wave radiation Fully nonlinear Body- nonlinear HOBEM Flared structure
下载PDF
Soil-Structure Interaction Analysis of Jack-up Platforms Subjected to Monochrome and Irregular Waves 被引量:3
4
作者 Maziar Gholami KORZANI Ali Akbar AGHAKOUCHAK 《China Ocean Engineering》 SCIE EI CSCD 2015年第1期65-80,共16页
As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of th... As jack-up platforms have recently been used in deeper and harsher waters, there has been an increasing demand to understand their behaviour more accurately to develop more sophisticated analysis techniques. One of the areas of significant development has been the modelling of spudean performance, where the load-displacement behaviour of the foundation is required to be included in any numerical model of the structure. In this study, beam on nonlinear winkler foundation (BNWF) modeling--which is based on using nonlinear springs and dampers instead of a continuum soil media--is employed for this purpose. A regular monochrome design wave and an irregular wave representing a design sea state are applied to the platform as lateral loading. By using the BNWF model and assuming a granular soil under spudcans, properties such as soil nonlinear behaviour near the structure, contact phenomena at the interface of soil and spudcan (such as uplifting and rocking), and geometrical nonlinear behaviour of the structure are studied. Results of this study show that inelastic behaviour of the soil causes an increase in the lateral displacement at the hull elevation and permanent unequal settlement in soil below the spudcans, which are increased by decreasing the friction angle of the sandy soil. In fact, spudeans and the underlying soil cause a relative fixity at the platform support, which changes the dynamic response of the structure compared with the case where the structure is assumed to have a fixed support or pinned support. For simulating this behaviour without explicit modelling of soil-structure interaction (SSI), moment- rotation curves at the end of platform legs, which are dependent on foundation dimensions and soil characteristics, are obtained. These curves can be used in a simplified model of the platform for considering the relative fixity at the soil- foundation interface. 展开更多
关键词 jack-up platforms wave loading nonlinear dynamic analysis soil-structure interaction (SS1) beam on nonlinear winkler foundation (BNWF)
下载PDF
Second-Order Analytic Solutions of Nonlinear Interactions of Edge Waves on A Plane Sloping Bottom 被引量:2
5
作者 洪广文 张俞 《China Ocean Engineering》 SCIE EI 2010年第1期1-14,共14页
Based on the full water-wave equation, a second-order analytic solution for nonlinear interaction of short edge waves on a plane sloping bottom is presented in this paper. For special ease of slope angle β = π/2, th... Based on the full water-wave equation, a second-order analytic solution for nonlinear interaction of short edge waves on a plane sloping bottom is presented in this paper. For special ease of slope angle β = π/2, this solution can reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline. Interactions between two edge waves including progressive, standing and partially reflected standing waves are also discussed. The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves are also given. The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated, and the corresponding theoreti- cal autocorrelation and spectral density functions of the first and the second orders are derived. The boundary conditions for the determination of the parameters of short edge wave are suggested, that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory. Finally some computation results are demonstrated. 展开更多
关键词 edge waves surface waves nonlinear wave interaction random process AUTOCORRELATION SPECTRA
下载PDF
MPS-FEM Coupled Method for Study of Wave-Structure Interaction 被引量:3
6
作者 Guanyu Zhang Xiang Chen Decheng Wan 《Journal of Marine Science and Application》 CSCD 2019年第4期387-399,共13页
Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynam... Nowadays,an increasing number of ships and marine structures are manufactured and inevitably operated in rough sea.As a result,some phenomena related to the violent fluid-elastic structure interactions(e.g.,hydrodynamic slamming on marine vessels,tsunami impact on onshore structures,and sloshing in liquid containers)have aroused huge challenges to ocean engineering fields.In this paper,the moving particle semi-implicit(MPS)method and finite element method(FEM)coupled method is proposed for use in numerical investigations of the interaction between a regular wave and a horizontal suspended structure.The fluid domain calculated by the MPS method is dispersed into fluid particles,and the structure domain solved by the FEM method is dispersed into beam elements.The generation of the 2D regular wave is firstly conducted,and convergence verification is performed to determine appropriate particle spacing for the simulation.Next,the regular wave interacting with a rigid structure is initially performed and verified through the comparison with the laboratory experiments.By verification,the MPS-FEM coupled method can be applied to fluid-structure interaction(FSI)problems with waves.On this basis,taking the flexibility of structure into consideration,the elastic dynamic response of the structure subjected to the wave slamming is investigated,including the evolutions of the free surface,the variation of the wave impact pressures,the velocity distribution,and the structural deformation response.By comparison with the rigid case,the effects of the structural flexibility on wave-elastic structure interaction can be obtained. 展开更多
关键词 MPS-FEM coupled method Fluid-structure interaction(FSI) Regular wave wave impact pressure structure deformation response
下载PDF
SPH Numerical Modeling for the Wave–Thin Structure Interaction 被引量:2
7
作者 REN Xi-feng SUN Zhao-chen +1 位作者 WANG Xing-gang LIANG Shu-xiu 《China Ocean Engineering》 SCIE EI CSCD 2018年第2期157-168,共12页
In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics(WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle(CDP)technique i... In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics(WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle(CDP)technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission. 展开更多
关键词 SPH CDP thin plate wavestructure interaction
下载PDF
Seismic wave input method for three-dimensional soil-structure dynamic interaction analysis based on the substructure of artificial boundaries 被引量:15
8
作者 Liu Jingbo Tan Hui +2 位作者 Bao Xin Wang Dongyang Li Shutao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期747-758,共12页
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident... The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves. 展开更多
关键词 soil-structure dynamic interaction SEISMIC wave INPUT wave method EQUIVALENT INPUT SEISMIC loads SUBstructure of artifi cial boundaries
下载PDF
Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures 被引量:1
9
作者 侯秀慧 邓子辰 周加喜 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第11期1371-1382,共12页
The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear d... The wave propagation problem in the nonlinear periodic mass-spring structure chain is analyzed using the symplectic mathematical method. The energy method is used to construct the dynamic equation, and the nonlinear dynamic equation is linearized using the small parameter perturbation method. Eigen-solutions of the symplectic matrix are used to analyze the wave propagation problem in nonlinear periodic lattices. Nonlinearity in the mass-spring chain, arising from the nonlinear spring stiffness effect, has profound effects on the overall transmission of the chain. The wave propagation characteristics are altered due to nonlinearity, and related to the incident wave intensity, which is a genuine nonlinear effect not present in the corresponding linear model. Numerical results show how the increase of nonlinearity or incident wave amplitude leads to closing of transmitting gaps. Comparison with the normal recursive approach shows effectiveness and superiority of the symplectic method for the wave propagation problem in nonlinear periodic structures. 展开更多
关键词 symplectic mathematical method nonlinear periodic structure elastic wave propagation
下载PDF
Nonlinear Dynamic Behaviors of A Floating Structure in Focused Waves 被引量:3
10
作者 曹飞凤 赵西增 《China Ocean Engineering》 SCIE EI CSCD 2015年第6期807-820,共14页
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house C... Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional(2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile(CIP)-based Cartesian grid model, in which a more accurate VOF(Volume of Fluid) method, the THINC/SW scheme(THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully. 展开更多
关键词 focused wave CIP method wave-structure interaction VOF method free surface flow wave breaking
下载PDF
Numerical Simulation of the Solitary Wave Interacting with an Elastic Structure Using MPS-FEM Coupled Method 被引量:2
11
作者 Chengping Rao Youlin Zhang Decheng Wan 《Journal of Marine Science and Application》 CSCD 2017年第4期395-404,共10页
Fluid-Structure Interaction(FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to e... Fluid-Structure Interaction(FSI) caused by fluid impacting onto a flexible structure commonly occurs in naval architecture and ocean engineering. Research on the problem of wave-structure interaction is important to ensure the safety of offshore structures. This paper presents the Moving Particle Semi-implicit and Finite Element Coupled Method(MPS-FEM) to simulate FSI problems. The Moving Particle Semi-implicit(MPS) method is used to calculate the fluid domain, while the Finite Element Method(FEM) is used to address the structure domain. The scheme for the coupling of MPS and FEM is introduced first. Then, numerical validation and convergent study are performed to verify the accuracy of the solver for solitary wave generation and FSI problems. The interaction between the solitary wave and an elastic structure is investigated by using the MPS-FEM coupled method. 展开更多
关键词 MESH-FREE METHOD moving particle SEMI-IMPLICIT finite element METHOD fluid-structure interaction SOLITARY wave
下载PDF
Soil-structure interaction on shallow rigid circular foundation:plane SH waves from far-field earthquakes 被引量:1
12
作者 Vincent W.Lee Hao Luo 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第1期29-45,共17页
A closed-form wave function analytic solution of two-dimensional scattering and diffraction of incident plane SH-waves by a fl exible wall on a rigid shallow circular foundation embedded in an elastic half-space is pr... A closed-form wave function analytic solution of two-dimensional scattering and diffraction of incident plane SH-waves by a fl exible wall on a rigid shallow circular foundation embedded in an elastic half-space is presented. This research generalizes the previous solution by Trifunac in 1972, which tackled only the semi-circular foundation, to arbitrary shallow circular-arc foundation cases, and is thus comparatively more realistic. Ground surface displacement spectra at higher frequencies are also obtained. As an analytical series solution, the accuracy and error analysis of the numerical results are also discussed. It was observed from the results that the rise-to-span ratio of the foundation profi le, frequency of incident waves, and mass ratios of different media(foundation-structure-soil) are the three primary factors that may affect the surface ground motion amplitudes near the structure. 展开更多
关键词 SH waves plane wave soil-structure interaction closed-form analytic solution Fourier-Bessel series
下载PDF
Effect of nonlinear soil-structure interaction on seismic response of low-rise SMRF buildings 被引量:1
13
作者 Prishati Raychowdhury Poonam Singh 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期541-551,共11页
The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional flexibility to the system and dissipating hysteretic energy at the soil-foundation interface. Ho... The nonlinear behavior of a soil-foundation system may alter the seismic response of a structure by providing additional flexibility to the system and dissipating hysteretic energy at the soil-foundation interface. However, the current design practice is still reluctant to consider the nonlinearity of the soil-foundation system, primarily due to lack of reliable modeling techniques. This study is motivated towards evaluating the effect of nonlinear soil-structure interaction (SSI) on the seismic responses of low-rise steel moment resisting frame (SMRF) structures. In order to achieve this, a Winkler- based approach is adopted, where the soil beneath the foundation is assumed to be a system of closely-spaced, independent, nonlinear spring elements. Static pushover analysis and nonlinear dynamic analyses are performed on a 3-story SMRF building and the performance of the structure is evaluated through a variety of force and displacement demand parameters. It is observed that incorporation of nonlinear SSI leads to an increase in story displacement demand and a significant reduction in base moment, base shear and inter-story drift demands, indicating the importance of its consideration towards achieving an economic, yet safe seismic design. 展开更多
关键词 soil-structure interaction Winkler modeling nonlinear analysis seismic response low-rise steel momentresisting frame
下载PDF
Nonlinear Interactions between the Quasi 5-day Wave and Tides Based on Meteor Radar Observations at Maui
14
作者 GU Jingxiao HUANG Chunming HUANG Kaiming 《空间科学学报》 CAS CSCD 北大核心 2015年第4期445-452,共8页
Nonlinear interactions between the quasi 5-day wave and tides based on meteor radar observation in the Mesosphere and Lower Thermosphere(MLT) at Maui are studied in this paper.Strong sum interaction between quasi 5-da... Nonlinear interactions between the quasi 5-day wave and tides based on meteor radar observation in the Mesosphere and Lower Thermosphere(MLT) at Maui are studied in this paper.Strong sum interaction between quasi 5-day wave and diurnal tide,and evident difference interaction between quasi 5-day wave and semidiurnal tide are observed during the time of attention.However,their difference and sum counterparts are clearly weaker.The secondary waves generated from those interactions beat with the tide and show intense modulation at the period of 5 days which confirms the existence of their interactions.Additionally,correlation coefficients among these waves are calculated to further explore their interactions and find that they can persist for several days although they are highly intermittent.The energy exchange among these waves can be reversible during the observational time.The periods when the significant difference interaction between the quasi 5-day wave and semidiurnal tide occur are much shorter than those when the significant sum interaction between the quasi 5-day wave and diurnal tide occur.Moreover,these two strong interactions can take place simultaneously.In generally,this study provides the proof of nonlinear interactions between quasi 5-day wave and tides which were seldom reported before. 展开更多
关键词 QUASI 5-day wave TIDES nonlinear interactION Mesos
下载PDF
Investigation of Wave-Structure Interaction Using State of the Art CFD Techniques 被引量:1
15
作者 Jan Westphalen Deborah M. Greaves +6 位作者 Alison Raby Zheng Zheng Hu Derek M. Causon Clive G. Mingham Pourya Omidvar Peter K. Stansby Benedict D. Rogers 《Open Journal of Fluid Dynamics》 2014年第1期18-43,共26页
The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fu... The suitability of computational fluid dynamics (CFD) for marine renewable energy research and development and in particular for simulating extreme wave interaction with a wave energy converter (WEC) is considered. Fully nonlinear time domain CFD is often considered to be an expensive and computationally intensive option for marine hydrodynamics and frequency-based methods are traditionally preferred by the industry. However, CFD models capture more of the physics of wave-structure interaction, and whereas traditional frequency domain approaches are restricted to linear motions, fully nonlinear CFD can simulate wave breaking and overtopping. Furthermore, with continuing advances in computing power and speed and the development of new algorithms for CFD, it is becoming a more popular option for design applications in the marine environment. In this work, different CFD approaches of increasing novelty are assessed: two commercial CFD packages incorporating recent advances in high resolution free surface flow simulation;a finite volume based Euler equation model with a shock capturing technique for the free surface;and meshless Smoothed Particle Hydrodynamics (SPH) method. These different approaches to fully nonlinear time domain simulation of free surface flow and wave structure interaction are applied to test cases of increasing complexity and the results compared with experimental data. Results are presented for regular wave interaction with a fixed horizontal cylinder, wave generation by a cone in driven vertical motion at the free surface and extreme wave interaction with a bobbing float (The Manchester Bobber WEC). The numerical results generally show good agreement with the physical experiments and simulate the wave-structure interaction and wave loading satisfactorily. The grid-based methods are shown to be generally less able than the meshless SPH to capture jet formation at the face of the cone, the resolution of the jet being grid dependent. 展开更多
关键词 wave Loading wave Energy wave-structure interaction Manchester Bobber CFD Physical Experiments FV CV-FE SPH Cartesian-Cut-Cell SPHysics AMAZON SC STAR CCM+ CFX
下载PDF
Formation of Nonlinear Solitary Vortical Structures by Coupled Electrostatic Drift and Ion-Acoustic Waves
16
作者 L.Z.Kahlon I.Javaid 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第12期41-45,共5页
Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary wave... Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed. 展开更多
关键词 Formation of nonlinear Solitary Vortical structures by Coupled Electrostatic Drift and Ion-Acoustic waves
下载PDF
A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS
17
作者 Price W.G. 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第2期95-109,共15页
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or... A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-LagrangianEulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed. 展开更多
关键词 fluid-structure interaction nonlinear numerical analysis ALE description overset grids flow around bluff-body
下载PDF
Numerical and Experimental Investigation of Interactions Between Free-Surface Waves and A Floating Breakwater with Cylindrical-Dual/Rectangular-Single Pontoon 被引量:9
18
作者 JI Chun-yan YANG Ke +1 位作者 CHENG Yong YUAN Zhi-ming 《China Ocean Engineering》 SCIE EI CSCD 2018年第4期388-399,共12页
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on... This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics(CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom(3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step.The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes(sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model. 展开更多
关键词 free-surface floating breakwater three DOF Navier Stokes solver wave structure interaction dynamic full-structured mesh
下载PDF
Seismic response of tall building considering soil-pile-structure interaction 被引量:6
19
作者 Han Yingcai Fluor Canada Ltd.,Calgary,AB,Canada Ph.D.,Principal Engineering Specialist 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2002年第1期57-64,共8页
The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile fo... The seismic behavior of tall buildings can he greatly affected by non-linear soil-pile interaction during strong earthquakes.In this study a 20-storey building is examined as a typical structure supported on a pile foundation for different conditions:(1) rigid base,i.e.no deformation in the foundation:(2) linear soil-pile system;and (3) nonlinear soil-pile system. The effects of pile foundation displacements on the behavior of tall building are investigated,and compared with the behavior of buildings supported on shallow foundation.With a model of non-reflective boundary between the near field and far field, Novak's method of soil-pile interaction is improved.The computation method for vibration of pile foundations and DYNAN computer program are introduced comprehensively.A series of dynamic experiments have been done on full-scale piles, including single pile and group,linear vibration and nonlinear vibration,to verify the validity of boundary zone model. 展开更多
关键词 dynamic soil-pile-structure interaction soil dynamics structural dynamics nonlinear vibration seismic response of tall building
下载PDF
Sedimentary structure of the western Bohai Bay basin and other basins in North China revealed by frequency dependent P-wave particle motion 被引量:3
20
作者 Chenhao Yang Fenglin Niu 《Geodesy and Geodynamics》 2019年第5期372-381,共10页
High-resolution seismic models of sediment basins are critical inputs for earthquake ground motion prediction and petroleum resource exploration.In this study we employed a newly developed technique that utilizes the ... High-resolution seismic models of sediment basins are critical inputs for earthquake ground motion prediction and petroleum resource exploration.In this study we employed a newly developed technique that utilizes the frequency-dependent nonlinear P-wave particle motion to estimate sedimentary structure beneath the Bohai Bay basin.A recent study suggests that the delay of the P wave on the horizontal component relative the vertical component and its variations over frequency are caused by interference of the direct P wave with waves generated at the sediment base.The frequency-dependent delay time can be used to constrain sediment thickness and seismic velocity beneath recording stations.We measured the particle motions of teleseismic P waves recorded by 249 broadband stations of the North China Array,which covers the western Bohai Bay basin and its surrounding areas.We found that the P waves of 90 stations inside the Bohai Bay basin and other local basins within the Taihang and Yanshan mountain ranges exhibit significant frequency-dependent nonlinear particle motions,and used the particle motion data to invert the sediment thickness(Z0)and surface S-wave velocity(β0).The estimated sediment thickness inside the Bohai Bay Basin varies from 1.02 km to 3.72 km,with an average of 3.20 km,which roughly agrees with previous active source studies. 展开更多
关键词 Teleseismic P wave nonlinear particle motion Frequency-dependent Sediment structure Bohai BAY basin
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部