The nonlinear wavelet estimator of regression function with random design is constructed. The optimal uniform convergence rate of the estimator in a ball of Besov spaceB 3 p,q is proved under quite general assumpation...The nonlinear wavelet estimator of regression function with random design is constructed. The optimal uniform convergence rate of the estimator in a ball of Besov spaceB 3 p,q is proved under quite general assumpations. The adaptive nonlinear wavelet estimator with near-optimal convergence rate in a wide range of smoothness function classes is also constructed. The properties of the nonlinear wavelet estimator given for random design regression and only with bounded third order moment of the error can be compared with those of nonlinear wavelet estimator given in literature for equal-spaced fixed design regression with i.i.d. Gauss error.展开更多
The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation Motivated by Reginska's work, we shall give ...The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation Motivated by Reginska's work, we shall give two nonlinear approximate methods to regularize the approximate solutions for high-dimensional backward heat equation, and prove that our methods are convergent.展开更多
Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have signi...Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent.展开更多
The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear...The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.展开更多
A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a G...A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.展开更多
A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling f...A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.展开更多
This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying...This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.展开更多
A new tight frame called as monoscale orthonormal ridgelet frame (MORF) is proposed. The localization principle and the orthonormal ridgelet constructed by Donoho are applied to construct the MORF, which are used to...A new tight frame called as monoscale orthonormal ridgelet frame (MORF) is proposed. The localization principle and the orthonormal ridgelet constructed by Donoho are applied to construct the MORF, which are used to evaluate the order of nonlinear approximation for image with edge. Because the new tight frame not only has directionality but also bears orthonormality. It overcomes redundancy of Candes's monoscale ridgelets and provides many excellent properties in practical application. Theoretical analysis and experiments demonstrate that the new frame has remarkable potential for image compression, image reconstruction, and image denoising with the simple refinement for MORF.展开更多
We propose a wavelet method to analyze the stochastic-elastic problem of specific adhesion between two elastic solids via ligand-receptor bond clusters, which is governed by a nonlinear integro-differential equation w...We propose a wavelet method to analyze the stochastic-elastic problem of specific adhesion between two elastic solids via ligand-receptor bond clusters, which is governed by a nonlinear integro-differential equation with a sin- gular Cauchy kernel to describe the mean-field coupling between deformation of elastic materials and stochastic behavior of the molecular bonds. To solve this problem, Galerkin method based on a wavelet approximation scheme is adopted, and special treatment which transforms the singular Cauchy kernel into a smooth one has been proposed to avoid the cumbersome calculation of singular integrals. Numerical results demonstrate that the method is fully capable of solving the specific adhesion problems with complex nonlinear and singular equations. Based on the proposed method, investigations are performed to reveal the relation between steady-state pulling force and mean surface separation under different stress concentration indexes, which is crucial for assembling the overall constitutive relations for multicellular tumor spheroids and polymer-matrix microcomposites.展开更多
This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1:40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this ...This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1:40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this purpose. The results indicate that the wave heights obey the Rayleigh distribution at the offshore location; however, in the shoaling region, the heights of the largest waves are underestimated by the theoretical distributions. In the surf zone, the wave heights can be approximated by the composite Weibull distribution. In addition, the nonlinear phase coupling within the irregular waves is investigated by the wavelet-based bicoherence. The bicoherence spectra reflect that the number of frequency modes participating in the phase coupling increases with the decreasing water depth, as does the degree of phase coupling. After the incipient breaking, even though the degree of phase coupling decreases, a great number of higher harmonic wave modes are also involved in nonlinear interactions. Moreover, the summed bicoherence indicates that the frequency mode related to the strongest local nonlinear interactions shifts to higher harmonics with the decreasing water depth.展开更多
The response of a nonlinear vibration system may be of three types, namely, periodic, quasiperiodic or chaotic,,when the parameters of the system are changed. The periodic motions can be identified by Poincare map, an...The response of a nonlinear vibration system may be of three types, namely, periodic, quasiperiodic or chaotic,,when the parameters of the system are changed. The periodic motions can be identified by Poincare map, and harmonic wavelet transform (HWT) can distinguish quasiperiod from chaos, so the existing domains of different types of motions of the system can be revealed in the parametric space with the method of HWT joining with Poincare map.展开更多
In this paper, an optimal adaptive H-infinity tracking control design method via wavelet network for a class of uncertain nonlinear systems with external disturbances is proposed to achieve H-infinity tracking perform...In this paper, an optimal adaptive H-infinity tracking control design method via wavelet network for a class of uncertain nonlinear systems with external disturbances is proposed to achieve H-infinity tracking performance. First, an alternate tracking error and a performance index with respect to the tracking error and the control effort are introduced in order to obtain better performance, especially, in reducing the cost of the control effort in the case of small attenuation levels. Next, H-infinity tracking performance, which attenuates the influence of both wavelet network approximation error and external disturbances on the modified tracking error, is formulated. Our results indicate that a small attenuation level does not lead to a large control signal. The proposed method insures an optimal trade-off between the amplitude of control signals and the performance of tracking errors. An example is given to illustrate the design efficiency.展开更多
The adaptive wavelet collocation method (AWCM) is a variable grid technology for solving partial differential equations (PDEs) with high singularities. Based on interpolating wavelets, the AWCM adapts the grid so ...The adaptive wavelet collocation method (AWCM) is a variable grid technology for solving partial differential equations (PDEs) with high singularities. Based on interpolating wavelets, the AWCM adapts the grid so that a higher resolution is automatically attributed to domain regions with high singularities. Accuracy problems with the AWCM have been reported in the literature, and in this paper problems of efficiency with the AWCM are discussed in detail through a simple one-dimensional (1D) nonlinear advection equation whose analytic solution is easily obtained. A simple and efficient implementation of the AWCM is investigated. Through studying the maximum errors at the moment of frontogenesis of the 1D nonlinear advection equation with different initial values and a comparison with the finite difference method (FDM) on a uniform grid, the AWCM shows good potential for modeling the front efficiently. The AWCM is also applied to a two-dimensional (2D) unbalanced frontogenesis model in its first attempt at numerical simulation of a meteorological front. Some important characteristics about the model are revealed by the new scheme.展开更多
Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs....Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.展开更多
In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these fu...In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.展开更多
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with su...We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.展开更多
基金Project supported by Doctoral Programme Foundationthe National Natural Science Foundation of China (Grant No. 19871003)Natural Science Fundation of Heilongjiang Province, China.
文摘The nonlinear wavelet estimator of regression function with random design is constructed. The optimal uniform convergence rate of the estimator in a ball of Besov spaceB 3 p,q is proved under quite general assumpations. The adaptive nonlinear wavelet estimator with near-optimal convergence rate in a wide range of smoothness function classes is also constructed. The properties of the nonlinear wavelet estimator given for random design regression and only with bounded third order moment of the error can be compared with those of nonlinear wavelet estimator given in literature for equal-spaced fixed design regression with i.i.d. Gauss error.
基金Supported by Beijing Natural Science Foundation(Grant No.1092003)Beijing Educational Committee Foundation(Grant No.PHR201008022) National Natural Science Foundation of China(Grant No.11271038)1)Corresponding author
文摘The backward heat equation is a typical ill-posed problem. In this paper, we shall apply a dual least squares method connecting Shannon wavelet to the following equation Motivated by Reginska's work, we shall give two nonlinear approximate methods to regularize the approximate solutions for high-dimensional backward heat equation, and prove that our methods are convergent.
文摘Wavelets are applied to detection of the jump points of a regression function in nonlinear autoregressive model x(t) = T(x(t-1)) + epsilon t. By checking the empirical wavelet coefficients of the data,which have significantly large absolute values across fine scale levels, the number of the jump points and locations where the jumps occur are estimated. The jump heights are also estimated. All estimators are shown to be consistent. Wavelet method ia also applied to the threshold AR(1) model(TAR(1)). The simple estimators of the thresholds are given,which are shown to be consistent.
基金Supported by the National Natural Science Foundation of China (69983005)
文摘The paper presents a class of nonlinear adaptive wavelet transforms for lossless image compression. In update step of the lifting the different operators are chosen by the local gradient of original image. A nonlinear morphological predictor follows the update adaptive lifting to result in fewer large wavelet coefficients near edges for reducing coding. The nonlinear adaptive wavelet transforms can also allow perfect reconstruction without any overhead cost. Experiment results are given to show lower entropy of the adaptive transformed images than those of the non-adaptive case and great applicable potentiality in lossless image compresslon.
基金supported by the National Natural Science Foundation of China(Nos.11502103 and11421062)the Open Fund of State Key Laboratory of Structural Analysis for Industrial Equipment of China(No.GZ15115)
文摘A sampling approximation for a function defined on a bounded interval is proposed by combining the Coiflet-type wavelet expansion and the boundary extension technique. Based on such a wavelet approximation scheme, a Galerkin procedure is developed for the spatial discretization of the generalized nonlinear Schr6dinger (NLS) equa- tions, and a system of ordinary differential equations for the time dependent unknowns is obtained. Then, the classical fourth-order explicit Runge-Kutta method is used to solve this semi-discretization system. To justify the present method, several widely considered problems are solved as the test examples, and the results demonstrate that the proposed wavelet algorithm has much better accuracy and a faster convergence rate in space than many existing numerical methods.
文摘A supported framework of a gyroscope's rotor is designed and the B-Spline wavelet finite element model of nonlinear supported magnetic field is worked out. A new finite element space is studied in which the scaling function of the B-spline wavelet is considered as the shape function of a tetrahedton. The magnetic field is spited by an artificial absorbing body which used the condition of field radiating, so the solution is unique. The resolution is improved via the varying gradient of the B-spline function under the condition of unchanging gridding. So there are some advantages in dealing with the focus flux and a high varying gradient result from a nonlinear magnetic field. The result is more practical. Plots of flux and in the space is studied via simulating the supported system model. The results of the study are useful in the research of the supported magnetic system for the gyroscope rotor.
文摘This paper provides an asymptotic expansion for the mean integrated squared error (MISE) of nonlinear wavelet-based mean regression function estimators with long memory data. This MISE expansion, when the underlying mean regression function is only piecewise smooth, is the same as analogous expansion for the kernel estimators.However, for the kernel estimators, this MISE expansion generally fails if the additional smoothness assumption is absent.
基金This project was supported by the National Nature Science Foundation of China (60473119)
文摘A new tight frame called as monoscale orthonormal ridgelet frame (MORF) is proposed. The localization principle and the orthonormal ridgelet constructed by Donoho are applied to construct the MORF, which are used to evaluate the order of nonlinear approximation for image with edge. Because the new tight frame not only has directionality but also bears orthonormality. It overcomes redundancy of Candes's monoscale ridgelets and provides many excellent properties in practical application. Theoretical analysis and experiments demonstrate that the new frame has remarkable potential for image compression, image reconstruction, and image denoising with the simple refinement for MORF.
基金supported by the National Natural Science Foundation of China(11032006 and 11121202)National Key Project of Magneto-Constrained Fusion Energy Development Program(2013GB110002)the Fundamental Research Funds for the Central Universities(lzujbky-2013-1)
文摘We propose a wavelet method to analyze the stochastic-elastic problem of specific adhesion between two elastic solids via ligand-receptor bond clusters, which is governed by a nonlinear integro-differential equation with a sin- gular Cauchy kernel to describe the mean-field coupling between deformation of elastic materials and stochastic behavior of the molecular bonds. To solve this problem, Galerkin method based on a wavelet approximation scheme is adopted, and special treatment which transforms the singular Cauchy kernel into a smooth one has been proposed to avoid the cumbersome calculation of singular integrals. Numerical results demonstrate that the method is fully capable of solving the specific adhesion problems with complex nonlinear and singular equations. Based on the proposed method, investigations are performed to reveal the relation between steady-state pulling force and mean surface separation under different stress concentration indexes, which is crucial for assembling the overall constitutive relations for multicellular tumor spheroids and polymer-matrix microcomposites.
基金financially supported by the National Nature Science Foundation of China(Grant Nos.51109032 and 11172058)A Foundation for the Author of National Excellent Doctoral Dissertation of PR China(FANEDD,Grant No.201347)
文摘This paper considers the nonlinear transformation of irregular waves propagating over a mild slope (1:40). Two cases of irregular waves, which are mechanically generated based on JONSWAP spectra, are used for this purpose. The results indicate that the wave heights obey the Rayleigh distribution at the offshore location; however, in the shoaling region, the heights of the largest waves are underestimated by the theoretical distributions. In the surf zone, the wave heights can be approximated by the composite Weibull distribution. In addition, the nonlinear phase coupling within the irregular waves is investigated by the wavelet-based bicoherence. The bicoherence spectra reflect that the number of frequency modes participating in the phase coupling increases with the decreasing water depth, as does the degree of phase coupling. After the incipient breaking, even though the degree of phase coupling decreases, a great number of higher harmonic wave modes are also involved in nonlinear interactions. Moreover, the summed bicoherence indicates that the frequency mode related to the strongest local nonlinear interactions shifts to higher harmonics with the decreasing water depth.
文摘The response of a nonlinear vibration system may be of three types, namely, periodic, quasiperiodic or chaotic,,when the parameters of the system are changed. The periodic motions can be identified by Poincare map, and harmonic wavelet transform (HWT) can distinguish quasiperiod from chaos, so the existing domains of different types of motions of the system can be revealed in the parametric space with the method of HWT joining with Poincare map.
基金the National Natural Science Foundation of China (No.60774049)the Major State Basic Research Development Program of China (2002CB312200).
文摘In this paper, an optimal adaptive H-infinity tracking control design method via wavelet network for a class of uncertain nonlinear systems with external disturbances is proposed to achieve H-infinity tracking performance. First, an alternate tracking error and a performance index with respect to the tracking error and the control effort are introduced in order to obtain better performance, especially, in reducing the cost of the control effort in the case of small attenuation levels. Next, H-infinity tracking performance, which attenuates the influence of both wavelet network approximation error and external disturbances on the modified tracking error, is formulated. Our results indicate that a small attenuation level does not lead to a large control signal. The proposed method insures an optimal trade-off between the amplitude of control signals and the performance of tracking errors. An example is given to illustrate the design efficiency.
基金supported by China Special Foundation for Public Service(Meteorology,GYHY200706033)Nature Science Foundation of China(Grant No.40675024)the State Key Basic Research Program(Grant No.2004CB18301)
文摘The adaptive wavelet collocation method (AWCM) is a variable grid technology for solving partial differential equations (PDEs) with high singularities. Based on interpolating wavelets, the AWCM adapts the grid so that a higher resolution is automatically attributed to domain regions with high singularities. Accuracy problems with the AWCM have been reported in the literature, and in this paper problems of efficiency with the AWCM are discussed in detail through a simple one-dimensional (1D) nonlinear advection equation whose analytic solution is easily obtained. A simple and efficient implementation of the AWCM is investigated. Through studying the maximum errors at the moment of frontogenesis of the 1D nonlinear advection equation with different initial values and a comparison with the finite difference method (FDM) on a uniform grid, the AWCM shows good potential for modeling the front efficiently. The AWCM is also applied to a two-dimensional (2D) unbalanced frontogenesis model in its first attempt at numerical simulation of a meteorological front. Some important characteristics about the model are revealed by the new scheme.
文摘Based on wavelet neural networks (WNNs) and recurrent neural networks (RNNs), a class of models on recurrent wavelet neural networks (RWNNs) is proposed. The new networks possess the advantages of WNNs and RNNs. In this paper, asymptotic stability of RWNNs is researched.according to the Lyapunov theorem, and some theorems and formulae are given. The simulation results show the excellent performance of the networks in nonlinear dynamic system recognition.
文摘In this paper, we present a new algorithm to solve a kind of nonlinear time space-fractional partial differential equations on a finite domain. The method is based on B-spline wavelets approximations, some of these functions are reshaped to satisfy on boundary conditions exactly. The Adams fractional method is used to reduce the problem to a system of equations. By multiscale method this system is divided into some smaller systems which have less computations. We get an approximated solution which is more accurate on some subdomains by combining the solutions of these systems. Illustrative examples are included to demonstrate the validity and applicability of our proposed technique, also the stability of the method is discussed.
基金This work is in part supported by the Danish Technical Science Foundation, Grant no. 9701481.
文摘We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.