The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide...The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.展开更多
Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive ...Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive and the quintic nonlinear Schroedinger equation with self-steepening, and self-frequency shift. Moreover, we discuss the formation conditions of the bright and dark solitary waves.展开更多
In literature,nonlinear traveling waves in elastic circular rods have only been studied based on single partial differential equation(pde)models,and here we consider such a problem by using a more accurate coupled-pde...In literature,nonlinear traveling waves in elastic circular rods have only been studied based on single partial differential equation(pde)models,and here we consider such a problem by using a more accurate coupled-pde model.We derive the Hamiltonian from the model equations for the long finite-amplitude wave approximation,analyze how the number of singular points of the system changes with the parameters,and study the features of these singular points qualitatively.Various physically acceptable nonlinear traveling waves are also discussed,and corresponding examples are given.In particular,we find that certain waves,which cannot be counted by the single-equation model,can arise.展开更多
Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continent...Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea(19°35'N,112°E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors,and an acoustic Doppler current profiler(ADCP).We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories.Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width.Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries(KdV) theory than the first-order KdV model.These results indicate that the northwestern South China Sea(SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.展开更多
This paper analyses bright and dark spatial self-similar waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. It finds an appropria...This paper analyses bright and dark spatial self-similar waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. It finds an appropriate transformation for the first time such that the nonlinear Schrodinger equation (NLSE) with varying coefficients transform into standard NLSE. It obtains one-solitonlike, two-solitonlike and multi-solitonlike self-similar wave solutions by using the transformation. Furthermore, it analyses the features of the self-similar waves and their collisions.展开更多
Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equat...Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.展开更多
In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the de...In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given.展开更多
This paper analyzes spatial grey self-similar solitary waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. New exact self-similar ...This paper analyzes spatial grey self-similar solitary waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. New exact self-similar solutions are found using a novel transformation and their main features are investigated by using direct computer simulations.展开更多
In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the pre...In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the presence of specific forcing exhibit the exact and explicit solitary wave solutions under certain conditions.展开更多
Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary wave...Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.展开更多
In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θ...This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θx+βζxx;with initial data and end states (ζθ)(x,0)=(ζ0,θ0)(x)→(ζ±,θ±)as x→∞.We obtain the existence of traveling wave solutions by phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without restrictions on the coeffi- cients a and v by the method of energy estimates.展开更多
In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some e...In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.展开更多
Using the trial equation method, a Broer-Kau-Kupershmidt (BKK) mechanism physical model is obtained, and the exact and approximate solitary traveling wave solutions are found. As an example, it is pointed out that t...Using the trial equation method, a Broer-Kau-Kupershmidt (BKK) mechanism physical model is obtained, and the exact and approximate solitary traveling wave solutions are found. As an example, it is pointed out that the solitary traveling wave approximate solutions have better accurate degree by using the homotopic mapping theory.展开更多
In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation. We identify all bifurcat...In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation. We identify all bifurcation conditions and phase portraits of the system in different regions of the three-dimensional parametric space, from which we present the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Furthermore, we obtain their exact expressions and simulations, which can help us understand the underlying physical behaviors of traveling wave solutions to the equation.展开更多
By using the method of dynamical systems, the travelling wave solutions of for an integrable nonlinear evolution equation is studied. Exact explicit parametric representations of kink and anti-kink wave, periodic wave...By using the method of dynamical systems, the travelling wave solutions of for an integrable nonlinear evolution equation is studied. Exact explicit parametric representations of kink and anti-kink wave, periodic wave solutions and uncountably infinite many smooth solitary wave solutions are given.展开更多
According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusi...According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.展开更多
In the present article, we construct the exact traveling wave solutions of some nonlinear PDEs in the mathematical physics via (1 + 1) dimensional Kaup Kupershmit equation, the (1 + 1) dimensional seventh order KdV eq...In the present article, we construct the exact traveling wave solutions of some nonlinear PDEs in the mathematical physics via (1 + 1) dimensional Kaup Kupershmit equation, the (1 + 1) dimensional seventh order KdV equation and (1 + 1) dimensional Kersten-Krasil Shchik equations by using the modified truncated expansion method. New exact solutions of these equations are found.展开更多
By means of extended homogeneous balance method and variable separationapproach, quite a general variable separation solution of the (2+l)-dimensionalBroer-Kaup-Kupershmidt equation is derived. From the variable separ...By means of extended homogeneous balance method and variable separationapproach, quite a general variable separation solution of the (2+l)-dimensionalBroer-Kaup-Kupershmidt equation is derived. From the variable separation solution and by selectingappropriate functions, a new class of (2+1)-dimensional nonpropagating solitary waves are found. Thenovel features exhibited by these new structures are first revealed.展开更多
The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By...The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By using coupled amplitude-phase formulation, a series of new exact cnoidal and solitary wave solutions with different parameters are obtained, which may have potential application in optical communication.展开更多
文摘The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.
基金The project supported by National Natural Science Foundation of Zhejiang Province of China under Grant No. Y605312
文摘Abstract By making use of the generalized sine-Gordon equation expansion method, we lind cnoidal periodic wave solutions and fundamental bright and dark optical solitary wave solutions for the fourth-order dispersive and the quintic nonlinear Schroedinger equation with self-steepening, and self-frequency shift. Moreover, we discuss the formation conditions of the bright and dark solitary waves.
基金The project supported by the Research Grants Council of the HKSAR,China (CityU 1107/99P) and the National Natural Science Foundation of China (10372054 and 10171061)
文摘In literature,nonlinear traveling waves in elastic circular rods have only been studied based on single partial differential equation(pde)models,and here we consider such a problem by using a more accurate coupled-pde model.We derive the Hamiltonian from the model equations for the long finite-amplitude wave approximation,analyze how the number of singular points of the system changes with the parameters,and study the features of these singular points qualitatively.Various physically acceptable nonlinear traveling waves are also discussed,and corresponding examples are given.In particular,we find that certain waves,which cannot be counted by the single-equation model,can arise.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX1-YW-12)the National High Technology Research and Development Program of China (863 program) (No.2008AA09A401,No.2006AA09A109)
文摘Large amplitude internal solitary waves(ISWs) often exhibit highly nonlinear effects and may contribute significantly to mixing and energy transporting in the ocean.We observed highly nonlinear ISWs over the continental shelf of the northwestern South China Sea(19°35'N,112°E) in May 2005 during the Wenchang Internal Wave Experiment using in-situ time series data from an array of temperature and salinity sensors,and an acoustic Doppler current profiler(ADCP).We summarized the characteristics of the ISWs and compared them with those of existing internal wave theories.Particular attention has been paid to characterizing solitons in terms of the relationship between shape and amplitude-width.Comparison between theoretical prediction and observation results shows that the high nonlinearity of these waves is better represented by the second-order extended Korteweg-de Vries(KdV) theory than the first-order KdV model.These results indicate that the northwestern South China Sea(SCS) is rich in highly nonlinear ISWs that are an indispensable part of the energy budget of the internal waves in the northern South China Sea.
基金Project supported by the National Natural Science Foundation of China(Grant No10575087)the Natural Science Foundation of Zhejiang Province,China(Grant No Y605056)
文摘This paper analyses bright and dark spatial self-similar waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. It finds an appropriate transformation for the first time such that the nonlinear Schrodinger equation (NLSE) with varying coefficients transform into standard NLSE. It obtains one-solitonlike, two-solitonlike and multi-solitonlike self-similar wave solutions by using the transformation. Furthermore, it analyses the features of the self-similar waves and their collisions.
文摘Through two methods, we investigate the solitary and periodic wave solutions of the differential equation describing a nonlinear coupled two-dimensional discrete electrical lattice. The fixed points of our model equation are examined and the bifurcations of phase portraits of this equation for various values of the front wave velocity are presented. Using the sineGordon expansion method and classic integration, we obtain exact transverse solutions including breathers, bright solitons,and periodic solutions.
基金supported by the National Natural Science Foundation of China(Grant No.41406018)
文摘In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given.
基金supported by National Natural Science Foundation of China under Grant No.0575087the Natural Science Foundation of Zhejiang Province under Grant No.Y605056
文摘This paper analyzes spatial grey self-similar solitary waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. New exact self-similar solutions are found using a novel transformation and their main features are investigated by using direct computer simulations.
文摘In this paper, an attempt is made to study some interesting results of the coupled nonlinear equations in the atmosphere. By introducing a phase angle function ζ, it is shown that the atmospheric equations in the presence of specific forcing exhibit the exact and explicit solitary wave solutions under certain conditions.
文摘Propagation of coupled electrostatic drift and ion-acoustic waves(DIAWs) is presented. It is shown that nonlinear solitary vortical structures can be formed by low-frequency coupled electrostatic DIAWs. Primary waves of distinct(small, intermediate and large) scales are considered. Appropriate set of 3 D equations consisting of the generalized Hasegawa-Mima equation for the electrostatic potential(involving both vector and scalar nonlinearities) and the equation of motion of ions parallel to magnetic field are obtained. According to experiments of laboratory plasma mainly focused to large scale DIAWs, the possibility of self-organization of DIAWs into the nonlinear solitary vortical structures is shown analytically. Peculiarities of scalar nonlinearities in the formation of solitary vortical structures are widely discussed.
基金Supported by the National Natural Science Foundation of China under Grant No.40876010the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences under Grant No.KZCX2-YW-Q03-08+2 种基金the LASG State Key Laboratory Special Fundthe Foundation of Shanghai Municipal Education Commission under Grant No.E03004the Natural Science Foundation of Zhejiang Province under Grant No.Y6090164
文摘In this paper, the approximate expressions of the solitary wave solutions for a class of nonlinear disturbed long-wave system are constructed using the homotopie mapping method.
基金supported by the Natural Science Foundation of China(11001095)the Ph.D.specialized grant of the Ministry of Education of China(20100144110001)+2 种基金the Special Fund for Basic Scientific Research of Central Colleges(CCNU12C01001)supported by the Fundamental Research Funds for the Central Universities(2015IA009)the Natural Science Foundation of China(61573012)
文摘This paper is concerned with the existence and the nonlinear asymptotic stabil- ity of traveling wave solutions to the Cauchy problem for a system of dissipative evolution equations {θt=vζx+(ζθ)x+aθxx,ζt=-θx+βζxx;with initial data and end states (ζθ)(x,0)=(ζ0,θ0)(x)→(ζ±,θ±)as x→∞.We obtain the existence of traveling wave solutions by phase plane analysis and show the asymptotic nonlinear stability of traveling wave solutions without restrictions on the coeffi- cients a and v by the method of energy estimates.
基金supported by the Research Foundation of Education Bureau of Hubei Province,China (Grant No Z200612001)the Natural Science Foundation of Yangtze University (Grant No 20061222)
文摘In this paper, the travelling wave solutions for the generalized Burgers-Huxley equation with nonlinear terms of any order are studied. By using the first integral method, which is based on the divisor theorem, some exact explicit travelling solitary wave solutions for the above equation are obtained. As a result, some minor errors and some known results in the previousl literature are clarified and improved.
基金supported by the National Natural Science Foundation of China(Grant Nos.141275062 and 1202106)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20123228120005)+3 种基金the Jiangsu Sensor Network and Modern Meteorological Equipment Preponderant Discipline Platform,Chinathe Natural Science Foundation from the Universities of Jiangsu Province,China(Grant No.13KJB170016)the Advance Research Foundation in Nanjing University of Information Science and Technology of China(Grant No.20110385)the Natural Science Foundation of Zhejiang Province,China(Grant No.LY13A010005)
文摘Using the trial equation method, a Broer-Kau-Kupershmidt (BKK) mechanism physical model is obtained, and the exact and approximate solitary traveling wave solutions are found. As an example, it is pointed out that the solitary traveling wave approximate solutions have better accurate degree by using the homotopic mapping theory.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11701191 and 11871232)the Program for Innovative Research Team in Science and Technology in University of Fujian Province,Quanzhou High-Level Talents Support Plan(Grant No.2017ZT012)the Subsidized Project for Cultivating Postgraduates’ Innovative Ability in Scientific Research of Huaqiao University
文摘In this work, we apply the bifurcation method of dynamical systems to investigate the underlying complex dynamics of traveling wave solutions to a highly nonlinear Fujimoto–Watanabe equation. We identify all bifurcation conditions and phase portraits of the system in different regions of the three-dimensional parametric space, from which we present the sufficient conditions to guarantee the existence of traveling wave solutions including solitary wave solutions, periodic wave solutions, kink-like(antikink-like) wave solutions, and compactons. Furthermore, we obtain their exact expressions and simulations, which can help us understand the underlying physical behaviors of traveling wave solutions to the equation.
基金Project supported by the National Natural Science Foundation of China(Nos.10671179,10772158)
文摘By using the method of dynamical systems, the travelling wave solutions of for an integrable nonlinear evolution equation is studied. Exact explicit parametric representations of kink and anti-kink wave, periodic wave solutions and uncountably infinite many smooth solitary wave solutions are given.
文摘According to the improved sine-cosine method and Wu-elimination method, a new algorithm to construct solitary wave solutions for systems of nonlinear evolution equations is put forward. The algorithm has some conclusions which are better than what the hyperbolic function method known does and simpler in use. With the aid of MATHEMATICA, the algorithm can be carried out in computer.
文摘In the present article, we construct the exact traveling wave solutions of some nonlinear PDEs in the mathematical physics via (1 + 1) dimensional Kaup Kupershmit equation, the (1 + 1) dimensional seventh order KdV equation and (1 + 1) dimensional Kersten-Krasil Shchik equations by using the modified truncated expansion method. New exact solutions of these equations are found.
文摘By means of extended homogeneous balance method and variable separationapproach, quite a general variable separation solution of the (2+l)-dimensionalBroer-Kaup-Kupershmidt equation is derived. From the variable separation solution and by selectingappropriate functions, a new class of (2+1)-dimensional nonpropagating solitary waves are found. Thenovel features exhibited by these new structures are first revealed.
文摘The coupled higher-order nonlinear Schroedinger system is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. By using coupled amplitude-phase formulation, a series of new exact cnoidal and solitary wave solutions with different parameters are obtained, which may have potential application in optical communication.