The nonlocal means( NLM) has been widely used in image processing. In this paper,we introduce a modified weight function for NLM denoising, which will compute the nonlocal similarities among the pre-processing pixel p...The nonlocal means( NLM) has been widely used in image processing. In this paper,we introduce a modified weight function for NLM denoising, which will compute the nonlocal similarities among the pre-processing pixel patches instead of the commonly used similarity measure based on noisy observations. By the law of large number,the norm for the pre-processing pixel patches is closer to the norm of the original clean pixel patches,so the proposed weight functions are more optimized and the selected similar patches are more accurate. Experimental results indicate the proposed algorithm achieves better restored results compared to the classical NLM's method.展开更多
NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PC...NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively.展开更多
Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhoo...Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm.展开更多
Image denoising is indispensable for image processing.In this paper,image denoising algorithm based on Nonlocal Means(NLM)filter is proposed.Recently,abundant enhancements based on NLM filter have been performed.Howev...Image denoising is indispensable for image processing.In this paper,image denoising algorithm based on Nonlocal Means(NLM)filter is proposed.Recently,abundant enhancements based on NLM filter have been performed.However,the performance of NLM filter is still inferior to that of other image processing approaches such as K-SVD.In this paper,NLM algorithm with weight refinement is utilized for image denoising.Weight refinement is performed to thoroughly take advantage of self-similarity of the image.Experimental results show good performance of the proposed method.展开更多
The de-noising of the fingerprint image is one of the key tasks before the extraction of the minutiae in automatic fingerprint matching. When used for de-noising the fingerprint image, the nonlocal means method can no...The de-noising of the fingerprint image is one of the key tasks before the extraction of the minutiae in automatic fingerprint matching. When used for de-noising the fingerprint image, the nonlocal means method can not preserve the local minutiae in the fingerprint image very well. To address this problem, we propose a local orientation field based nonlocal means (NLM-LOF) method in this paper. Experimental results on the simulated and real images show that the proposed method can suppress noise effectively while preserving edges and details in the fingerprint image and it outperforms the state-of-art nonlocal means method in terms of qualitative metrics and visual comparisons.展开更多
Edge preserved smoothing techniques have gained importance for the purpose of image processing applications A good edge preserving filter is given by nonlocal-means filter rather than any other linear model based appr...Edge preserved smoothing techniques have gained importance for the purpose of image processing applications A good edge preserving filter is given by nonlocal-means filter rather than any other linear model based approaches. This paper explores a different approach of nonlocal-means filter by using robust M-estimator function rather than the exponential function for its weight calculation. Here the filter output at each pixel is the weighted average of pixels with surrounding neighborhoods using the chosen robust M-estimator function. The main direction of this paper is to identify the best robust M-estimator function for nonlocal-means denoising algorithm. In order to speed up the computation, a new patch classification method is followed to eliminate the uncorrelated patches from the weighted averaging process. This patch classification approach compares favorably to existing techniques in respect of quality versus computational time. Validations using standard test images and brain atlas images have been analyzed and the results were compared with the other known methods. It is seen that there is reason to believe that the proposed refined technique has some notable points.展开更多
Image denoising is a classical problem in image processing. Its essential goal is to preserve the image features and to reduce noise effiectively. The nonlocal means(NL-means) filter is a successful approach proposed ...Image denoising is a classical problem in image processing. Its essential goal is to preserve the image features and to reduce noise effiectively. The nonlocal means(NL-means) filter is a successful approach proposed in recent years due to its patch similarity comparison. However, the accuracy of similarities in this algorithm degrades when it suffiers from heavy noise. In this paper, we introduce feature similarities based on a multichannel filter into NL-means filter. The multi-bank based feature vectors of each pixel in the image are computed by convolving from various orientations and scales to Leung-Malik set(edge, bar and spot filters), and then the similarities based on this information are computed instead of pixel intensity. Experiments are carried out with Rician noise. The results demonstrate the superior performance of the proposed method. The wavelet-based method and traditional NL-means in term of both mean square error(MSE) and perceptual quality are compared with the proposed method, and structural similarity(SSIM) and quality index based on local variance(QILV) are given.展开更多
An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its s...An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its similar versions, and remove the dissimilar pixels. Besides, the curvelet is adopted to adjust the coefficients of these patches with low SSIM. Experiments show that the proposed method has the capacity to denoise effectively, improves the peak signal-to-noise ratio of the image, and keeps better visual result in edges information reservation as well.展开更多
An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Mult...An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Multiple holograms are reconstructed and superimposed, and the intensity is averaged to smooth the noise. The adaptive algorithm based on the nonlocal means is designed to further suppress the speckle. The presented method is compared with other methods reduction is improved, and the proposed method is effective The experimental results show that speckle and feasible.展开更多
基金National Natural Science Foundations of China(Nos.U1504603,61301229)Key Scientific Research Project of Colleges and Universities in Henan Province,China(Nos.18A120002,19A110014)
文摘The nonlocal means( NLM) has been widely used in image processing. In this paper,we introduce a modified weight function for NLM denoising, which will compute the nonlocal similarities among the pre-processing pixel patches instead of the commonly used similarity measure based on noisy observations. By the law of large number,the norm for the pre-processing pixel patches is closer to the norm of the original clean pixel patches,so the proposed weight functions are more optimized and the selected similar patches are more accurate. Experimental results indicate the proposed algorithm achieves better restored results compared to the classical NLM's method.
基金Supported by the National Natural Science Foundation of China (No. 60776795,60736043,60902031,and 60805012)the Research Fund for the Doctoral Program of Higher Education of China (No. 200807010004,20070701023)the Fundamental Research Funds for the Central Universities of China (No. JY10000902028)
文摘NonLocal Means(NLM),taking fully advantage of image redundancy,has been proved to be very effective in noise removal.However,high computational load limits its wide application.Based on Principle Component Analysis(PCA),Principle Neighborhood Dictionary(PND) was proposed to reduce the computational load of NLM.Nevertheless,as the principle components in PND method are computed directly from noisy image neighborhoods,they are prone to be inaccurate due to the presence of noise.In this paper,an improved scheme for image denoising is proposed.This scheme is based on PND and uses preprocessing via Gaussian filter to eliminate the influence of noise.PCA is then used to project those filtered image neighborhood vectors onto a lower-dimensional space.With the preproc-essing process,the principle components computed are more accurate resulting in an improved de-noising performance.A comparison with some NLM based and state-of-art denoising methods shows that the proposed method performs well in terms of Peak Signal to Noise Ratio(PSNR) as well as image visual fidelity.The experimental results demonstrate that our method outperforms existing methods both subjectively and objectively.
基金National Key Research and Development Program of China(No.2016YFC0101601)Fund for Shanxi“1331 Project”Key Innovative Research Team+1 种基金Shanxi Province Science Foundation for Youths(No.201601D021080)Universities Science and Technology Innovation Project of Shanxi Province(No.2017107)
文摘Classic non-local means (CNLM) algorithm uses the inherent self-similarity in images for noise removal. The denoised pixel value is estimated through the weighted average of all the pixels in its non-local neighborhood. In the CNLM algorithm, the differences between the pixel value and the distance of the pixel to the center are both taken into consideration to calculate the weighting coefficients. However, the Gaussian kernel cannot reflect the information of edge and structure due to its isotropy, and it has poor performance in flat regions. In this paper, an improved non-local means algorithm based on local edge direction is presented for image denoising. In edge and structure regions, the steering kernel regression (SKR) coefficients are used to calculate the weights, and in flat regions the average kernel is used. Experiments show that the proposed algorithm can effectively protect edge and structure while removing noises better when compared with the CNLM algorithm.
基金supported by the MKE(The Ministry of Knowledge Economy),Korea,under the ITRC(Infor mation Technology Research Center)support programsupervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2011-C1090-1111-0003)
文摘Image denoising is indispensable for image processing.In this paper,image denoising algorithm based on Nonlocal Means(NLM)filter is proposed.Recently,abundant enhancements based on NLM filter have been performed.However,the performance of NLM filter is still inferior to that of other image processing approaches such as K-SVD.In this paper,NLM algorithm with weight refinement is utilized for image denoising.Weight refinement is performed to thoroughly take advantage of self-similarity of the image.Experimental results show good performance of the proposed method.
文摘The de-noising of the fingerprint image is one of the key tasks before the extraction of the minutiae in automatic fingerprint matching. When used for de-noising the fingerprint image, the nonlocal means method can not preserve the local minutiae in the fingerprint image very well. To address this problem, we propose a local orientation field based nonlocal means (NLM-LOF) method in this paper. Experimental results on the simulated and real images show that the proposed method can suppress noise effectively while preserving edges and details in the fingerprint image and it outperforms the state-of-art nonlocal means method in terms of qualitative metrics and visual comparisons.
文摘Edge preserved smoothing techniques have gained importance for the purpose of image processing applications A good edge preserving filter is given by nonlocal-means filter rather than any other linear model based approaches. This paper explores a different approach of nonlocal-means filter by using robust M-estimator function rather than the exponential function for its weight calculation. Here the filter output at each pixel is the weighted average of pixels with surrounding neighborhoods using the chosen robust M-estimator function. The main direction of this paper is to identify the best robust M-estimator function for nonlocal-means denoising algorithm. In order to speed up the computation, a new patch classification method is followed to eliminate the uncorrelated patches from the weighted averaging process. This patch classification approach compares favorably to existing techniques in respect of quality versus computational time. Validations using standard test images and brain atlas images have been analyzed and the results were compared with the other known methods. It is seen that there is reason to believe that the proposed refined technique has some notable points.
基金the Postgraduate Innovation Ability Cultivating Foundation of China(No.Z-SY-009)
文摘Image denoising is a classical problem in image processing. Its essential goal is to preserve the image features and to reduce noise effiectively. The nonlocal means(NL-means) filter is a successful approach proposed in recent years due to its patch similarity comparison. However, the accuracy of similarities in this algorithm degrades when it suffiers from heavy noise. In this paper, we introduce feature similarities based on a multichannel filter into NL-means filter. The multi-bank based feature vectors of each pixel in the image are computed by convolving from various orientations and scales to Leung-Malik set(edge, bar and spot filters), and then the similarities based on this information are computed instead of pixel intensity. Experiments are carried out with Rician noise. The results demonstrate the superior performance of the proposed method. The wavelet-based method and traditional NL-means in term of both mean square error(MSE) and perceptual quality are compared with the proposed method, and structural similarity(SSIM) and quality index based on local variance(QILV) are given.
文摘An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its similar versions, and remove the dissimilar pixels. Besides, the curvelet is adopted to adjust the coefficients of these patches with low SSIM. Experiments show that the proposed method has the capacity to denoise effectively, improves the peak signal-to-noise ratio of the image, and keeps better visual result in edges information reservation as well.
文摘磁共振成像(Magnetic Resonance Imaging,MRI)已经成为一种常见的影像检查方式,MRI的去噪算法影响着MRI的成像效果。基于深度学习的MRI去噪算法需要一定量的数据,绝大部分基于非深度学习的MRI去噪算法都是将MRI数据转化为实数之后进行去噪的,针对复数MRI中的复数数据类型的算法也存在着失真的问题。因此,提出一种通过单张MRI脑图像的原始数据进行噪点剔除的算法,以此更好得去除图像噪声。该算法从MRI的原始数据出发,利用了MRI噪声分布性质和MRI脑图像的特点,以判断MRI图像中噪声明显的点,从而剔除MRI中特定的莱斯分布的噪声。并将所提出的算法结合了MRI去噪中常用的非局部平均算法(Non-Local Means denoising,NLM)与三维块匹配算法(Block-Matching and 3D filtering,BM3D),并和不使用该算法剔除噪点的NLM、BM3D进行了对比评估。对比结果表明,在噪声密度不同的多种情况下,该算法总能优化与之相结合的图像去噪算法,在不同的噪声情况下使峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)与结构相似性(Structural Similarity,SSIM)提高了1%~9%。最后将该算法结合BM3D,对比了DnCNN、低秩聚类算法(Weighted Nuclear Norm Minimization,WNNM)、BM3D、NLM等用于MRI去噪的算法,在莱斯噪声较多时,该算法在PSNR上有更好的表现。
基金supported by the National Natural Science Foundation of China(No.61177018)the Program for New Century Excellent Talents in University(No.NECT-11-0596)+1 种基金the Key Program of Beijing Sci-ence and Technology Plan(No.D121100004812001)Beijing Nova Program(No.2011066)
文摘An integrated method based on optical and digital image processing is presented to suppress speckle in digital holography. A spatial light modulator is adopted to introduce random phases to the illuminating beam. Multiple holograms are reconstructed and superimposed, and the intensity is averaged to smooth the noise. The adaptive algorithm based on the nonlocal means is designed to further suppress the speckle. The presented method is compared with other methods reduction is improved, and the proposed method is effective The experimental results show that speckle and feasible.