期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
一类随机泛函微分方程带随机步长的EM逼近的渐近稳定 被引量:19
1
作者 马丽 马瑞楠 《应用数学和力学》 CSCD 北大核心 2019年第1期97-107,共11页
研究了一类带有限延迟的随机泛函微分方程的Euler-Maruyama(EM)逼近,给出了该方程的带随机步长的EM算法,得到了随机步长的两个特点:首先,有限个步长求和是停时;其次,可列无限多个步长求和是发散的.最终,由离散形式的非负半鞅收敛定理,... 研究了一类带有限延迟的随机泛函微分方程的Euler-Maruyama(EM)逼近,给出了该方程的带随机步长的EM算法,得到了随机步长的两个特点:首先,有限个步长求和是停时;其次,可列无限多个步长求和是发散的.最终,由离散形式的非负半鞅收敛定理,得到了在系数满足局部Lipschitz条件和单调条件下,带随机步长的EM数值解几乎处处收敛到0.该文拓展了2017年毛学荣关于无延迟的随机微分方程带随机步长EM数值解的结果. 展开更多
关键词 随机泛函微分方程 带随机步长的EM逼近 非负半鞅收敛定理 几乎处处稳定
下载PDF
一类具有连续分布延时的随机反应扩散的Hopfield神经网络的收敛动力学行为 被引量:1
2
作者 戴志娟 孙建华 《南京大学学报(数学半年刊)》 CAS 2005年第2期197-211,共15页
本文研究了一类具有连续分布延时的随机反应扩散的神经网络模型.通过构建恰当的Lyapunov函数,以及运用非负半鞅收敛性定理,得到了该网络平衡解几乎必然指数稳定和矩指数稳定的充分条件.最后我们给出了一个例子验证了条件的正确性.本文... 本文研究了一类具有连续分布延时的随机反应扩散的神经网络模型.通过构建恰当的Lyapunov函数,以及运用非负半鞅收敛性定理,得到了该网络平衡解几乎必然指数稳定和矩指数稳定的充分条件.最后我们给出了一个例子验证了条件的正确性.本文所得到的结果不要求激励函数是可导,有界,单调非减的,也不要求连接权矩阵是对称的,在解决最优化问题等方面有重要意义.因此我们推广和完善了以前的结果. 展开更多
关键词 HOPFIELD神经网络 反应扩散 时滞 非负半鞅收敛定理 几乎必然指数稳定
下载PDF
矩阵非负双分裂的收敛定理和比较定理 被引量:1
3
作者 张拴红 畅大为 《纺织高校基础科学学报》 CAS 2011年第3期322-325,共4页
当解线性方程组Ax=b时,将系数矩阵A作双分裂分裂A=P-R+S,P是非奇异的.运用矩阵和代数理论给出并证明了系数矩阵A的非负双分裂的收敛定理和比较定理,最后用实例加以验证.
关键词 非负双分裂 收敛定理 比较定理
下载PDF
一类NSFDE的带随机步长EM数值解的渐近性质
4
作者 马瑞楠 马丽 《海南师范大学学报(自然科学版)》 CAS 2018年第3期295-305,共11页
研究了一类有中立项的随机泛函微分方程的EM逼近,给出了带随机步长的EM算法。由非负半鞅收敛定理证明了随机步长的EM数值解几乎处处收敛到零。
关键词 中立随机泛函微分方程 带随机步长的EM逼近 非负半鞅收敛定理 几乎处处稳定
下载PDF
Asymptotic and stable properties of general stochastic functional differential equations
5
作者 Xiaojing Zhong Feiqi Deng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期138-143,共6页
The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic deriva... The asymptotic and stable properties of general stochastic functional differential equations are investigated by the multiple Lyapunov function method, which admits non-negative up-per bounds for the stochastic derivatives of the Lyapunov functions, a theorem for asymptotic properties of the LaSal e-type described by limit sets of the solutions of the equations is obtained. Based on the asymptotic properties to the limit set, a theorem of asymptotic stability of the stochastic functional differential equations is also established, which enables us to construct the Lyapunov functions more easily in application. Particularly, the wel-known classical theorem on stochastic stability is a special case of our result, the operator LV is not required to be negative which is more general to fulfil and the stochastic perturbation plays an important role in it. These show clearly the improvement of the traditional method to find the Lyapunov functions. A numerical simulation example is given to il ustrate the usage of the method. 展开更多
关键词 stochastic functional differential equations Lyapunov functions LaSalle asymptotic properties STABILITY semi-martingale convergence theorem.
下载PDF
ASYMPTOTIC STABILITIES OF STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS
6
作者 沈轶 江明辉 廖晓昕 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第11期1577-1584,共8页
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution... Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results. 展开更多
关键词 stochastic functional differential equation stochastic neural network asymptotic stability semi-martingale convergence theorem Ito^ formula
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部