This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength char...This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength characteristics of slab-column connections with nonrectangular columns under punching shear load are investigated. Nine specimens with the three kinds of nonrectangular columns and two reference specimens with square columns are tested. The tested ultimate loads, deformations, and failure modes of specimens are presented and discussed. Test results reveal that the punching shear strength and ductility of the connections with nonrectangular columns are higher than those of the corresponding connections with square columns, and also prove that the application of nonrectangular columns to flat-plate structure was feasible. Based on the test results, one method of calculating punching shear strength of connections with nonrectangular columns is proposed, which conforms with the current design practice of China. The test results on the punching shear strength are compared with the predictions of the formulas proposed by codes of several different countrie; and the predictions given by ACI code and China code are found to be conservative as the reinforcement ratio is increased.展开更多
文摘This paper present an experimental study on the RC slab-column connections with nonrectangular columns, namely cross-shaped column, T-shaped column and L-shaped column. The punching shear deformation and strength characteristics of slab-column connections with nonrectangular columns under punching shear load are investigated. Nine specimens with the three kinds of nonrectangular columns and two reference specimens with square columns are tested. The tested ultimate loads, deformations, and failure modes of specimens are presented and discussed. Test results reveal that the punching shear strength and ductility of the connections with nonrectangular columns are higher than those of the corresponding connections with square columns, and also prove that the application of nonrectangular columns to flat-plate structure was feasible. Based on the test results, one method of calculating punching shear strength of connections with nonrectangular columns is proposed, which conforms with the current design practice of China. The test results on the punching shear strength are compared with the predictions of the formulas proposed by codes of several different countrie; and the predictions given by ACI code and China code are found to be conservative as the reinforcement ratio is increased.