A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef...A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.展开更多
Let M = . In this paper, a necessary condition and an optimalsufficient condition on the orthogonality of M-wavelets are obtained by the introduction of cycle relat to M.
Suppose M and N are two r×r and s×s dilation matrices,respectively.LetΓM andΓN represent the complete sets of representatives of distinct cosets of the quotient groups M-T Zr/Zr and N-T Zs/Zs,respectively....Suppose M and N are two r×r and s×s dilation matrices,respectively.LetΓM andΓN represent the complete sets of representatives of distinct cosets of the quotient groups M-T Zr/Zr and N-T Zs/Zs,respectively.Two methods for constructing nonseparable Ω-filter banks from M-filter banks and N-filter banks are presented,where Ω is a(r+s) ×(r+s) dilation matrix such that one of its complete sets of representatives of distinct cosets of the quotient groups Ω-T Zr+s/Zr+s areΓΩ={[γT h,ζ T q] T:γh∈ΓM,ζq∈ΓN}.Specially,Ω can be [MΘ0N],whereΘis a r×s integer matrix with M-1Θbeing also an integer matrix.Moreover,if the constructed filter bank satisfies Lawton's condition,which can be easy to verify,then it generates an orthonormal nonseparable Ω-wavelet basis for L2(Rr+s).Properties,including Lawton's condition,vanishing moments and regularity of the new Ω-filter banks or new Ω-wavelet basis are discussed then.Finally,a class of nonseparable Ω-wavelet basis for L2(Rr+1) are constructed and three other examples are given to illustrate the results.In particular,when M=N=2,all results obtained in this paper appeared in[1].展开更多
文摘A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.
基金Supported by Natural Science Foundation of Beijing.
文摘Let M = . In this paper, a necessary condition and an optimalsufficient condition on the orthogonality of M-wavelets are obtained by the introduction of cycle relat to M.
基金Supported by the National Natural Science Foundation of China(11071152)the Natural Science Foundation of Guangdong Province(10151503101000025)
文摘Suppose M and N are two r×r and s×s dilation matrices,respectively.LetΓM andΓN represent the complete sets of representatives of distinct cosets of the quotient groups M-T Zr/Zr and N-T Zs/Zs,respectively.Two methods for constructing nonseparable Ω-filter banks from M-filter banks and N-filter banks are presented,where Ω is a(r+s) ×(r+s) dilation matrix such that one of its complete sets of representatives of distinct cosets of the quotient groups Ω-T Zr+s/Zr+s areΓΩ={[γT h,ζ T q] T:γh∈ΓM,ζq∈ΓN}.Specially,Ω can be [MΘ0N],whereΘis a r×s integer matrix with M-1Θbeing also an integer matrix.Moreover,if the constructed filter bank satisfies Lawton's condition,which can be easy to verify,then it generates an orthonormal nonseparable Ω-wavelet basis for L2(Rr+s).Properties,including Lawton's condition,vanishing moments and regularity of the new Ω-filter banks or new Ω-wavelet basis are discussed then.Finally,a class of nonseparable Ω-wavelet basis for L2(Rr+1) are constructed and three other examples are given to illustrate the results.In particular,when M=N=2,all results obtained in this paper appeared in[1].