A subset I of vertices of an undirected connected graph G is a nonseparating independent set(NSIS)if no two vertices of I are adjacent and GI is connected.Let Z(G)denote the cardinality of a maximum NSIS of G.A nonsep...A subset I of vertices of an undirected connected graph G is a nonseparating independent set(NSIS)if no two vertices of I are adjacent and GI is connected.Let Z(G)denote the cardinality of a maximum NSIS of G.A nonseparating independent set containing Z(G)vertices is called the maximum nonseparating independent set.In this paper,we firstly give an upper bound for Z(G)of regular graphs and determine Z(G)for some types of circular graphs.Secondly,we show a relationship between Z(G)and the maximum genus M(G)of a general graph.Finally,an important formula is provided to compute Z(G),i.e.,Z(G)=Σx∈I dI(x)+2(M(G-I)-γM(G))+(ξ(G-I)-ξ(G));where I is the maximum nonseparating independent set and ξ(G)is the Betti deficiency(Xuong,1979)of G.展开更多
In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multiplie...In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multipliers (ADMM), is employed to solve such problems typically, which still requires the assumption of the gradient Lipschitz continuity condition on the objective function to ensure overall convergence from the current knowledge. However, many practical applications do not adhere to the conditions of smoothness. In this study, we justify the convergence of variant Bregman ADMM for the problem with coupling terms to circumvent the issue of the global Lipschitz continuity of the gradient. We demonstrate that the iterative sequence generated by our approach converges to a critical point of the issue when the corresponding function fulfills the Kurdyka-Lojasiewicz inequality and certain assumptions apply. In addition, we illustrate the convergence rate of the algorithm.展开更多
We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit,K-symplectic in the extended phase space with long time energy conservation properties. They are based on ex...We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit,K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for two non-canonical Hamiltonian systems. Numerical tests show that the proposed methods exhibit good numerical performance in preserving the phase orbit and the energy of the system over long time, whereas higher order Runge–Kutta methods do not preserve these properties. Numerical tests also show that the K-symplectic methods exhibit better efficiency than that of the same order implicit symplectic, explicit and implicit symplectic methods for the original nonseparable non-canonical systems. On the other hand, the fourth order K-symplectic method is more efficient than the fourth order Yoshida’s method, the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om explicit K-symplectic methods for the extended phase space Hamiltonians, but less efficient than the the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om extended phase space symplectic-like methods with the midpoint permutation.展开更多
A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vert...A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vertex set of a 3-regular simple graph is provided.展开更多
A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coef...A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.展开更多
The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonse...The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.展开更多
Let M = . In this paper, a necessary condition and an optimalsufficient condition on the orthogonality of M-wavelets are obtained by the introduction of cycle relat to M.
A general method for constructing bidimensional orthogonal nonseparable mul- tiwavelets is presented. Moreover, this construction method can be extended to the con- struction of n-dimensional multiwavelets. In additio...A general method for constructing bidimensional orthogonal nonseparable mul- tiwavelets is presented. Moreover, this construction method can be extended to the con- struction of n-dimensional multiwavelets. In addition, we also study some properties of the multiwavelets such as balancing. Finally, we give an-example to illustrate our method to construct bidimensional nonseparable compactly supported orthogonal multiwavelets.展开更多
Suppose M and N are two r×r and s×s dilation matrices,respectively.LetΓM andΓN represent the complete sets of representatives of distinct cosets of the quotient groups M-T Zr/Zr and N-T Zs/Zs,respectively....Suppose M and N are two r×r and s×s dilation matrices,respectively.LetΓM andΓN represent the complete sets of representatives of distinct cosets of the quotient groups M-T Zr/Zr and N-T Zs/Zs,respectively.Two methods for constructing nonseparable Ω-filter banks from M-filter banks and N-filter banks are presented,where Ω is a(r+s) ×(r+s) dilation matrix such that one of its complete sets of representatives of distinct cosets of the quotient groups Ω-T Zr+s/Zr+s areΓΩ={[γT h,ζ T q] T:γh∈ΓM,ζq∈ΓN}.Specially,Ω can be [MΘ0N],whereΘis a r×s integer matrix with M-1Θbeing also an integer matrix.Moreover,if the constructed filter bank satisfies Lawton's condition,which can be easy to verify,then it generates an orthonormal nonseparable Ω-wavelet basis for L2(Rr+s).Properties,including Lawton's condition,vanishing moments and regularity of the new Ω-filter banks or new Ω-wavelet basis are discussed then.Finally,a class of nonseparable Ω-wavelet basis for L2(Rr+1) are constructed and three other examples are given to illustrate the results.In particular,when M=N=2,all results obtained in this paper appeared in[1].展开更多
In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a fa...In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.展开更多
Quasi-interpolation has been studied in many papers, e. g., [5]. Here we introduce nonseparable scaling function quasi-interpolation and show that its approximation can provide similar convergence properties as scalar...Quasi-interpolation has been studied in many papers, e. g., [5]. Here we introduce nonseparable scaling function quasi-interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.展开更多
Efficient values from Game Theory are used, in order to find out a fair allocation for a scheduling game associated with the problem of scheduling jobs with a common due date. A four person game illustrates the basic ...Efficient values from Game Theory are used, in order to find out a fair allocation for a scheduling game associated with the problem of scheduling jobs with a common due date. A four person game illustrates the basic ideas and the computational difficulties.展开更多
We present, for the first time, a unified description of adiabatic collision channels and the Wannier channel in electron-atom scattering. We identify the Wannier channel as the solution of a recently presented partia...We present, for the first time, a unified description of adiabatic collision channels and the Wannier channel in electron-atom scattering. We identify the Wannier channel as the solution of a recently presented partial differential equation of parabolic type. The kernel of that equation has been constructed near the ionization threshold. Its eigenstates are shown to be members of a Banach space. For the purpose of demonstration, this paper embeds one adiabatic channel into a Bannach space. The full set of an adiabatic spectrum will be embedded into the Wannier continuum of a Banach space in a forthcoming paper. This technique delivers amended non-adiabatic collision channnels with ebergy-dependent potentials. That dependence manifests itself as energy-dependent discontinuity at the threshold. The branch above threshold describes the double escape of electrons, whereas the branch below threshold replaces an infinity of strongly coupled adiabatic channels by one new channel. The present paper is restricted to two-electron atoms consisting only of <em>s</em><sup>2</sup> <sup>1</sup><em>S</em> configurations. Our model shows new unexpected effects including an electron-electron attraction similar to a Cooper pair except that our electron pair couples only to one nucleus at rest rather than to a vibrating lattice. Our electron-electron attraction stems from a dynamic deformation of the potential surface.展开更多
We present a scattering theory for charged particles suitable for electron atom collisions. Starting from the Hamilton-Jacobi equation for N electrons in the field of a nucleus or an ion core, we derive a parabolic di...We present a scattering theory for charged particles suitable for electron atom collisions. Starting from the Hamilton-Jacobi equation for N electrons in the field of a nucleus or an ion core, we derive a parabolic differential equation that resembles the heat equation. We identify a Fresnel distribution as the main ingredient of its kernel. In particular, we show that high multiply excited states are strongly suppressed increasingly so for approaching the ionization threshold. That effect compares favorably with experimental data. Also, the Wannier channel is controlled by a Fresnel distribution. Moreover, that channel represents a novel continuum to our knowledge that has never been considered so far. The classical action has been employed to derive quatum wave functions in the semiclassical limit. The curvature of the N-elctron potential surface is shown to be the essential ingredient of an initial value problem for elastic and/or inelastic processes. The spectral region near the ionization threshold needs a special action to describe the Wannier phenomenon. This Wannier channel manifests itself by a novel continuum never considered before.展开更多
This work is about a splitting method for solving a nonconvex nonseparable optimization problem with linear constraints,where the objective function consists of two separable functions and a coupled term.First,based o...This work is about a splitting method for solving a nonconvex nonseparable optimization problem with linear constraints,where the objective function consists of two separable functions and a coupled term.First,based on the ideas from Bregman distance and Peaceman–Rachford splitting method,the Bregman Peaceman–Rachford splitting method with different relaxation factors for the multiplier is proposed.Second,the global and strong convergence of the proposed algorithm are proved under general conditions including the region of the two relaxation factors as well as the crucial Kurdyka–Łojasiewicz property.Third,when the associated Kurdyka–Łojasiewicz property function has a special structure,the sublinear and linear convergence rates of the proposed algorithm are guaranteed.Furthermore,some preliminary numerical results are shown to indicate the effectiveness of the proposed algorithm.展开更多
In this paper we enumerate the rooted dual loopless nonseparable near-triangular maps on the sphere and the projective plane with the valency of root-face and the number of inner faces as parameters. Explicit expressi...In this paper we enumerate the rooted dual loopless nonseparable near-triangular maps on the sphere and the projective plane with the valency of root-face and the number of inner faces as parameters. Explicit expressions of enumerating functions are derived for such maps on the sphere and the projective plane. A parametric expression of the generating function is obtained for the rooted 2-connected triangular maps on the projective plane, from which asymptotics evaluations are derived.展开更多
Let M=(111-1).In this paper,an optimal upper bound estimateof the modules of Fourier transforms of M-refinable distributions is obtained by theintroduction of cycle related to M.
Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M2 = 2I. First, we present the correlation of the scaling functions with dilation matrix M and 2I. Then by relating the properties of sc...Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M2 = 2I. First, we present the correlation of the scaling functions with dilation matrix M and 2I. Then by relating the properties of scaling functions with dilation matrix 2I to the properties of scaling functions with dilation matrix M, we give a parameterization of a class of bivariate nonseparable orthogonal symmetric compactly supported scaling functions with dilation matrix M. Finally, a construction example of nonseparable orthogonal symmetric and compactly supported scaling functions is given.展开更多
In this paper, we study the rooted nonseparable maps on the sphere and the projective plane with the valency of root-face and the number of edges as parameters. Explicit expression of enumerating functions are obtaine...In this paper, we study the rooted nonseparable maps on the sphere and the projective plane with the valency of root-face and the number of edges as parameters. Explicit expression of enumerating functions are obtained for such maps on the sphere and the projective plane. A parametric expression of the generating function is obtained for such maps on the projective plane, from which asymptotic evaluations are derived. Moreover, if the number of edges is sufficiently large, then almost all nonseparable maps on the projective plane are not triangulation.展开更多
Most of results of Bestvina and Mogilski [Characterizing certain incomplete infinite-di- mensional absolute retracts. Michigan Math. J., 33, 291-313 (1986)] on strong Z-sets in ANR's and absorbing sets is generaliz...Most of results of Bestvina and Mogilski [Characterizing certain incomplete infinite-di- mensional absolute retracts. Michigan Math. J., 33, 291-313 (1986)] on strong Z-sets in ANR's and absorbing sets is generalized to nonseparable case. It is shown that if an ANR X is locally homotopy dense embeddable in infinite-dimensional Hilbert manifolds and w(U) ---- w(X) (where "w"is the topological weight) for each open nonempty subset U of X, then X itself i,~ homotopy dense embeddable in a Hilbert manifold. It is also demonstrated that whenever X is an AR, its weak product W(X, *) ---- {(xn)=l C X : x~ = * for almost all n} is homeomorphic to a pre-Hilbert space E with E EE. An intrinsic characterization of manifolds modelled on such pre-Hilbert spaces is given.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11171114,11401576,61662066,62072296)Science and Technology Commission of Shanghai Municipality(No.13dz2260400)。
文摘A subset I of vertices of an undirected connected graph G is a nonseparating independent set(NSIS)if no two vertices of I are adjacent and GI is connected.Let Z(G)denote the cardinality of a maximum NSIS of G.A nonseparating independent set containing Z(G)vertices is called the maximum nonseparating independent set.In this paper,we firstly give an upper bound for Z(G)of regular graphs and determine Z(G)for some types of circular graphs.Secondly,we show a relationship between Z(G)and the maximum genus M(G)of a general graph.Finally,an important formula is provided to compute Z(G),i.e.,Z(G)=Σx∈I dI(x)+2(M(G-I)-γM(G))+(ξ(G-I)-ξ(G));where I is the maximum nonseparating independent set and ξ(G)is the Betti deficiency(Xuong,1979)of G.
文摘In this paper, our focus lies on addressing a two-block linearly constrained nonseparable nonconvex optimization problem with coupling terms. The most classical algorithm, the alternating direction method of multipliers (ADMM), is employed to solve such problems typically, which still requires the assumption of the gradient Lipschitz continuity condition on the objective function to ensure overall convergence from the current knowledge. However, many practical applications do not adhere to the conditions of smoothness. In this study, we justify the convergence of variant Bregman ADMM for the problem with coupling terms to circumvent the issue of the global Lipschitz continuity of the gradient. We demonstrate that the iterative sequence generated by our approach converges to a critical point of the issue when the corresponding function fulfills the Kurdyka-Lojasiewicz inequality and certain assumptions apply. In addition, we illustrate the convergence rate of the algorithm.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11901564 and 12171466)。
文摘We propose efficient numerical methods for nonseparable non-canonical Hamiltonian systems which are explicit,K-symplectic in the extended phase space with long time energy conservation properties. They are based on extending the original phase space to several copies of the phase space and imposing a mechanical restraint on the copies of the phase space. Explicit K-symplectic methods are constructed for two non-canonical Hamiltonian systems. Numerical tests show that the proposed methods exhibit good numerical performance in preserving the phase orbit and the energy of the system over long time, whereas higher order Runge–Kutta methods do not preserve these properties. Numerical tests also show that the K-symplectic methods exhibit better efficiency than that of the same order implicit symplectic, explicit and implicit symplectic methods for the original nonseparable non-canonical systems. On the other hand, the fourth order K-symplectic method is more efficient than the fourth order Yoshida’s method, the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om explicit K-symplectic methods for the extended phase space Hamiltonians, but less efficient than the the optimized partitioned Runge–Kutta and Runge–Kutta–Nystr ¨om extended phase space symplectic-like methods with the midpoint permutation.
文摘A subset of the vertex set of a graph is a feedback vertex set of the graph if the resulting graph is a forest after removed the vertex subset from the graph. A polynomial algorithm for finding a minimum feedback vertex set of a 3-regular simple graph is provided.
文摘A muitisensor image fusion algorithm is described using 2-dimensional nonseparable wavelet frame (NWF) transform. The source muitisensor images are first decomposed by the NWF transform. Then, the NWF transform coefficients of the source images are combined into the composite NWF transform coefficients. Inverse NWF transform is performed on the composite NWF transform coefficients in order to obtain the intermediate fused image. Finally, intensity adjustment is applied to the intermediate fused image in order to maintain the dynamic intensity range. Experiment resuits using real data show that the proposed algorithm works well in muitisensor image fusion.
文摘The authors introduce nonseparable scaling function interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.
基金Supported by Natural Science Foundation of Beijing.
文摘Let M = . In this paper, a necessary condition and an optimalsufficient condition on the orthogonality of M-wavelets are obtained by the introduction of cycle relat to M.
文摘A general method for constructing bidimensional orthogonal nonseparable mul- tiwavelets is presented. Moreover, this construction method can be extended to the con- struction of n-dimensional multiwavelets. In addition, we also study some properties of the multiwavelets such as balancing. Finally, we give an-example to illustrate our method to construct bidimensional nonseparable compactly supported orthogonal multiwavelets.
基金Supported by the National Natural Science Foundation of China(11071152)the Natural Science Foundation of Guangdong Province(10151503101000025)
文摘Suppose M and N are two r×r and s×s dilation matrices,respectively.LetΓM andΓN represent the complete sets of representatives of distinct cosets of the quotient groups M-T Zr/Zr and N-T Zs/Zs,respectively.Two methods for constructing nonseparable Ω-filter banks from M-filter banks and N-filter banks are presented,where Ω is a(r+s) ×(r+s) dilation matrix such that one of its complete sets of representatives of distinct cosets of the quotient groups Ω-T Zr+s/Zr+s areΓΩ={[γT h,ζ T q] T:γh∈ΓM,ζq∈ΓN}.Specially,Ω can be [MΘ0N],whereΘis a r×s integer matrix with M-1Θbeing also an integer matrix.Moreover,if the constructed filter bank satisfies Lawton's condition,which can be easy to verify,then it generates an orthonormal nonseparable Ω-wavelet basis for L2(Rr+s).Properties,including Lawton's condition,vanishing moments and regularity of the new Ω-filter banks or new Ω-wavelet basis are discussed then.Finally,a class of nonseparable Ω-wavelet basis for L2(Rr+1) are constructed and three other examples are given to illustrate the results.In particular,when M=N=2,all results obtained in this paper appeared in[1].
文摘In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.
文摘Quasi-interpolation has been studied in many papers, e. g., [5]. Here we introduce nonseparable scaling function quasi-interpolation and show that its approximation can provide similar convergence properties as scalar wavelet system. Several equivalent statements of accuracy of nonseparable scaling function are also given. In the numerical experiments, it appears that nonseparable scaling function interpolation has better convergence results than scalar wavelet systems in some cases.
文摘Efficient values from Game Theory are used, in order to find out a fair allocation for a scheduling game associated with the problem of scheduling jobs with a common due date. A four person game illustrates the basic ideas and the computational difficulties.
文摘We present, for the first time, a unified description of adiabatic collision channels and the Wannier channel in electron-atom scattering. We identify the Wannier channel as the solution of a recently presented partial differential equation of parabolic type. The kernel of that equation has been constructed near the ionization threshold. Its eigenstates are shown to be members of a Banach space. For the purpose of demonstration, this paper embeds one adiabatic channel into a Bannach space. The full set of an adiabatic spectrum will be embedded into the Wannier continuum of a Banach space in a forthcoming paper. This technique delivers amended non-adiabatic collision channnels with ebergy-dependent potentials. That dependence manifests itself as energy-dependent discontinuity at the threshold. The branch above threshold describes the double escape of electrons, whereas the branch below threshold replaces an infinity of strongly coupled adiabatic channels by one new channel. The present paper is restricted to two-electron atoms consisting only of <em>s</em><sup>2</sup> <sup>1</sup><em>S</em> configurations. Our model shows new unexpected effects including an electron-electron attraction similar to a Cooper pair except that our electron pair couples only to one nucleus at rest rather than to a vibrating lattice. Our electron-electron attraction stems from a dynamic deformation of the potential surface.
文摘We present a scattering theory for charged particles suitable for electron atom collisions. Starting from the Hamilton-Jacobi equation for N electrons in the field of a nucleus or an ion core, we derive a parabolic differential equation that resembles the heat equation. We identify a Fresnel distribution as the main ingredient of its kernel. In particular, we show that high multiply excited states are strongly suppressed increasingly so for approaching the ionization threshold. That effect compares favorably with experimental data. Also, the Wannier channel is controlled by a Fresnel distribution. Moreover, that channel represents a novel continuum to our knowledge that has never been considered so far. The classical action has been employed to derive quatum wave functions in the semiclassical limit. The curvature of the N-elctron potential surface is shown to be the essential ingredient of an initial value problem for elastic and/or inelastic processes. The spectral region near the ionization threshold needs a special action to describe the Wannier phenomenon. This Wannier channel manifests itself by a novel continuum never considered before.
基金supported by the National Natural Science Foundation of China(No.12171106)the Natural Science Foundation of Guangxi Province(Nos.2020GXNSFDA238017 and 2018GXNSFFA281007).
文摘This work is about a splitting method for solving a nonconvex nonseparable optimization problem with linear constraints,where the objective function consists of two separable functions and a coupled term.First,based on the ideas from Bregman distance and Peaceman–Rachford splitting method,the Bregman Peaceman–Rachford splitting method with different relaxation factors for the multiplier is proposed.Second,the global and strong convergence of the proposed algorithm are proved under general conditions including the region of the two relaxation factors as well as the crucial Kurdyka–Łojasiewicz property.Third,when the associated Kurdyka–Łojasiewicz property function has a special structure,the sublinear and linear convergence rates of the proposed algorithm are guaranteed.Furthermore,some preliminary numerical results are shown to indicate the effectiveness of the proposed algorithm.
基金NNSF of China(10271048, 60373030)the Tenth Five Year Plan of the 211 Project Foundation of Central University for Nationalities
文摘In this paper we enumerate the rooted dual loopless nonseparable near-triangular maps on the sphere and the projective plane with the valency of root-face and the number of inner faces as parameters. Explicit expressions of enumerating functions are derived for such maps on the sphere and the projective plane. A parametric expression of the generating function is obtained for the rooted 2-connected triangular maps on the projective plane, from which asymptotics evaluations are derived.
基金Supported by the Natural Science Foundation of Beijing(1013005)the Educational Committee Foundation of Beijing(01KJ-019)
文摘Let M=(111-1).In this paper,an optimal upper bound estimateof the modules of Fourier transforms of M-refinable distributions is obtained by theintroduction of cycle related to M.
基金Supported by the Natural Science Foundation of Guangdong Province (Grant Nos. 06105648 05008289+1 种基金 032038)the Doctoral Foundation of Guangdong Province (Grant No.04300917)
文摘Let I be the 2 × 2 identity matrix, and M a 2 × 2 dilation matrix with M2 = 2I. First, we present the correlation of the scaling functions with dilation matrix M and 2I. Then by relating the properties of scaling functions with dilation matrix 2I to the properties of scaling functions with dilation matrix M, we give a parameterization of a class of bivariate nonseparable orthogonal symmetric compactly supported scaling functions with dilation matrix M. Finally, a construction example of nonseparable orthogonal symmetric and compactly supported scaling functions is given.
基金Supported by the National Natural Science Foundation of China (No. 10771225)the project of science research plan of The State Ethnic Affairs Commission of PRC (No. 07ZY04)the project of "211" of Minzu University of China (No. 021211030312)
文摘In this paper, we study the rooted nonseparable maps on the sphere and the projective plane with the valency of root-face and the number of edges as parameters. Explicit expression of enumerating functions are obtained for such maps on the sphere and the projective plane. A parametric expression of the generating function is obtained for such maps on the projective plane, from which asymptotic evaluations are derived. Moreover, if the number of edges is sufficiently large, then almost all nonseparable maps on the projective plane are not triangulation.
文摘Most of results of Bestvina and Mogilski [Characterizing certain incomplete infinite-di- mensional absolute retracts. Michigan Math. J., 33, 291-313 (1986)] on strong Z-sets in ANR's and absorbing sets is generalized to nonseparable case. It is shown that if an ANR X is locally homotopy dense embeddable in infinite-dimensional Hilbert manifolds and w(U) ---- w(X) (where "w"is the topological weight) for each open nonempty subset U of X, then X itself i,~ homotopy dense embeddable in a Hilbert manifold. It is also demonstrated that whenever X is an AR, its weak product W(X, *) ---- {(xn)=l C X : x~ = * for almost all n} is homeomorphic to a pre-Hilbert space E with E EE. An intrinsic characterization of manifolds modelled on such pre-Hilbert spaces is given.