期刊文献+
共找到628篇文章
< 1 2 32 >
每页显示 20 50 100
Nonsingular Fast Terminal Sliding Mode Control Based on Nonlinear Disturbance Observer for a Quadrotor 被引量:1
1
作者 ZHAO Jing WANG Peng +2 位作者 SUN Yanfei XU Fengyu XIE Fei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期219-230,共12页
Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is ... Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances. 展开更多
关键词 quadrotor aircraft nonlinear disturbance observer(NDO) nonsingular fast terminal sliding mode control(NFTSMC) disturbances
下载PDF
The Non-Singular Fast Terminal Sliding Mode Control of Interior Permanent Magnet Synchronous Motor Based on Deep Flux Weakening Switching Point Tracking
2
作者 Xiangfei Li Yang Yin +2 位作者 Yang Zhou Wenchang Liu Kaihui Zhao 《Energy Engineering》 EI 2023年第2期277-297,共21页
This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior mag... This paper presents a novel non-singular fast terminal sliding mode control(NFTSMC)based on the deep flux weakening switching point tracking method in order to improve the control performance of permanent interior magnet synchronous motor(IPMSM)drive systems.The mathematical model of flux weakening(FW)control is established,and the deep flux weakening switching point is calculated accurately by analyzing the relationship between the torque curve and voltage decline curve.Next,a second-order NFTSMC is designed for the speed loop controller to ensure that the system converges to the equilibrium state in finite time.Then,an extended sliding mode disturbance observer(ESMDO)is designed to estimate the uncertainty of the system.Finally,compared with both the PI control and sliding mode control(SMC)by simulations and experiments with different working conditions,the method proposed has the merits of accelerating convergence,improving steady-state accuracy,and minimizing the current and torque pulsation. 展开更多
关键词 Interior permanentmagnet synchronousmotor(IPMSM) flux weakening(FW)control non-singular fast terminal sliding mode control(NFTSMC) extended sliding mode disturbance observer(ESMDO)
下载PDF
Adaptive Neural Observer-Based Nonsingular Super-Twisting Terminal Sliding-Mode Controller Design for a Class of Hovercraft Nonlinear Systems 被引量:1
3
作者 Hamede Karami Reza Ghasemi 《Journal of Marine Science and Application》 CSCD 2021年第2期325-332,共8页
Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles.Hovercrafts are implemented in several applications,such as military missions,transportation,and scientific ... Designing a controller to stabilize maneuvering hovercrafts is an important challenge in amphibious vehicles.Hovercrafts are implemented in several applications,such as military missions,transportation,and scientific tasks.Thus.to improve their performance,it is crucial to control the system and compensate uncertainties and disruptions.In this paper,both classic and intelligent approaches are combined to design an observer-based controller.The system is assumed to be both controllable and observable.An adaptive neural network observer with guaranteed stability is derived for the nonlinear dynamics of a hovercraft,which is controlled via a nonsingular super-twisting terminal sliding-mode method.The main merits of the proposed method are as follows:(1) the Lyapunov stability of the overall closed-loop system,(2) the convergence of the tracking and observer errors to zero,(3) the robustness against uncertainties and disturbances,and(4) the reduction of the chattering phenomena.The simulation results validate the excellent performance of the derived method. 展开更多
关键词 HOVERCRAFT Neural network observer terminal sliding mode Nonlinear system nonsingular Super twisting
下载PDF
Sliding Mode Control Approach with Integrated Disturbance Observer for PMSM Speed System 被引量:6
4
作者 Lei Yuan Yunhao Jiang +1 位作者 Lu Xiong Pan Wang 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期118-127,共10页
The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of ... The research on high-performance vector control of permanent magnet synchronous motor(PMSM)drive system plays an extremely important role in electrical drive system.To further improve the speed control performance of the system,a fast non-singular end sliding mode(FNTSM)surface function based on traditional NTSM control is developed.The theoretical analysis proves that the FNTSM surface function has a faster dynamic response and more finite-time convergence.In addition,for the self-vibration problem caused by high sliding mode switching gain,an FNTSM control method with anti-disturbance capability was designed based on the linear disturbance observer(DO),i.e.the FNTSMDO method was employed to devise the PMSM speed regulator.The comparative simulation and experiment results with traditional PI control and NTSM control methods indicate that the FNTSMDO method could improve the dynamic performance and anti-interference of the system. 展开更多
关键词 PMSM fast nonsingular terminal sliding-mode Disturbance observer PI control
下载PDF
Trajectory tracking and obstacle avoidance method for robots based on fast terminal sliding mode 被引量:4
5
作者 CAO Zhi-bin YANG Wei +1 位作者 SHAO Xing-ling LIU Ning 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期78-86,共9页
For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advant... For accurate trajectory tracking and obstacle avoidance in finite time of a nonholonomic mobile robot,a trajectory tracking controller based on global fast terminal sliding mode method is proposed,which has the advantages of chattering-free and adjustable convergence time.First of all,the kinematics model of the robot is established in mobile carrier coordinates.Secondly,the global structure including terminal attractor and exponential convergence of the fast terminal sliding mode trajectory tracking controller is proved by Lyapunov stability theory,ensuring that the trajectory and heading angle tracking error converges to a smaller zero range in finite time.Finally,the artificial potential field obstacle avoidance method is introduced to make the robot not only track the reference trajectory strictly,but also avoid the obstacles.The simulation results show that the proposed method can achieve a stable tracking control in finite time for a given reference trajectory. 展开更多
关键词 trajectory tracking global fast terminal sliding mode adjustable convergence time chattering free artificial potential field method
下载PDF
Precise robust motion control of cell puncture mechanism driven by piezoelectric actuators with fractional-order nonsingular terminal slidingmode control 被引量:2
6
作者 Shengdong Yu Hongtao Wu +2 位作者 Mingyang Xie Haiping Lin Jinyu Ma 《Bio-Design and Manufacturing》 SCIE CSCD 2020年第4期410-426,共17页
A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on... A novel robust controller is proposed in this study to realize the precise motion control of a cell puncture mechanism(CPM)driven by piezoelectric ceramics(PEAs).The entire dynamic model of CPM is constructed based on the Bouc–Wen model,and the nonlinear part of the dynamic model is optimized locally to facilitate the construction of a robust controller.A model-based,nonlinear robust controller is constructed using time-delay estimation(TDE)and fractional-order nonsingular terminal sliding mode(FONTSM).The proposed controller does not require prior knowledge of unknown disturbances due to its real-time online estimation and compensation of unknown terms by using the TDE technology.The controller also has finite-time convergence and high-precision trajectory tracking capabilities due to FONTSM manifold and fast terminal sliding mode-type reaching law.The stability of the closed-loop system is proved by Lyapunov stability theory.Computer simulation and hardware-in-loop simulation experiments of CPM verify that the proposed controller outperforms traditional terminal sliding mode controllers,such as the integer-order or model-free controller.The proposed controller can also continuously output without chattering and has high control accuracy.Zebrafish embryo is used as a verification target to complete the cell puncture experiment.From the engineering application perspective,the proposed control strategy can be effectively applied in a PEA-driven CPM. 展开更多
关键词 Cell puncture mechanism(CPM) Piezoelectric actuator(PEA) Robust motion control Fractional-order nonsingular terminal sliding mode(FONTSM) Time-delay estimation(TDE)
下载PDF
Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs 被引量:1
7
作者 Mohammad Pourmahmood Aghababa Hassan Feizi 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期107-116,共10页
This paper deals with the design of a novel nonsingular terminal sliding mode controller for finite-time synchro-nization of two different chaotic systems with fully unknown parameters and nonlinear inputs. We propose... This paper deals with the design of a novel nonsingular terminal sliding mode controller for finite-time synchro-nization of two different chaotic systems with fully unknown parameters and nonlinear inputs. We propose a novel nonsingular terminal sliding surface and prove its finite-time convergence to zero. We assume that both the master's and the slave's system parameters are unknown in advance. Proper adaptation laws are derived to tackle the unknown parameters. An adaptive sliding mode control law is designed to ensure the existence of the sliding mode in finite time. We prove that both reaching and sliding mode phases are stable in finite time. An estimation of convergence time is given. Two illustrative examples show the effectiveness and usefulness of the proposed technique. It is worthwhile noticing that the introduced nonsingular terminal sliding mode can be applied to a wide variety of nonlinear control problems. 展开更多
关键词 nonsingular terminal sliding mode finite-time synchronization uncertain parameter nonlinear input
下载PDF
Decoupled nonsingular terminal sliding mode control for affine nonlinear systems 被引量:1
8
作者 Yueneng Yang Ye Yan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期192-200,共9页
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p... A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC). 展开更多
关键词 nonlinear control feedback linearization terminal sliding mode control nonsingular affine nonlinear system.
下载PDF
Fuzzy Fractional-Order Fast Terminal Sliding Mode Control for Some Chaotic Microcomponents 被引量:1
9
作者 Jianxin Han Qichang Zhang +1 位作者 Wei Wang Jing Wang 《Transactions of Tianjin University》 EI CAS 2017年第3期289-294,共6页
In this paper, we propose a novel fractional-order fast terminal sliding mode control method, based on an integer-order scheme, to stabilize the chaotic motion of two typical microcomponents. We apply the fractional L... In this paper, we propose a novel fractional-order fast terminal sliding mode control method, based on an integer-order scheme, to stabilize the chaotic motion of two typical microcomponents. We apply the fractional Lyapunov stability theorem to analytically guarantee the asymptotic stability of a system characterized by uncertainties and external disturbances. To reduce chattering, we design a fuzzy logic algorithm to replace the traditional signum function in the switching law. Lastly, we perform numerical simulations with both the fractional-order and integer-order control laws. Results show that the proposed control law is effective in suppressing chaos. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Asymptotic stability Calculations Chaotic systems Control theory Fuzzy logic Fuzzy sets Motion control
下载PDF
Non-Negative Adaptive Mechanism-Based Sliding Mode Control for Parallel Manipulators with Uncertainties
10
作者 Van-Truong Nguyen 《Computers, Materials & Continua》 SCIE EI 2023年第2期2771-2787,共17页
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators... In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method. 展开更多
关键词 Parallel manipulator uncertainties and disturbances nonsingular fast terminal sliding mode control non-negative adaptive mechanism tracking differentiator
下载PDF
Terminal Sliding Mode Fuzzy Control Based on Multiple Sliding Surfaces for Nonlinear Ship Autopilot Systems 被引量:2
11
作者 袁雷 吴汉松 《Journal of Marine Science and Application》 2010年第4期425-430,共6页
A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the p... A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms. 展开更多
关键词 ship course control unmatched uncertainty multiple sliding mode control nonsingular terminal sliding mode control ROBUSTNESS
下载PDF
Grey Wolf Optimization Based Tuning of Terminal Sliding Mode Controllers for a Quadrotor 被引量:2
12
作者 Rabii Fessi Hegazy Rezk Soufiene Bouallègue 《Computers, Materials & Continua》 SCIE EI 2021年第8期2265-2282,共18页
The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf O... The research on Unmanned Aerial Vehicles(UAV)has intensified considerably thanks to the recent growth in the fields of advanced automatic control,artificial intelligence,and miniaturization.In this paper,a Grey Wolf Optimization(GWO)algorithm is proposed and successfully applied to tune all effective parameters of Fast Terminal Sliding Mode(FTSM)controllers for a quadrotor UAV.A full control scheme is first established to deal with the coupled and underactuated dynamics of the drone.Controllers for altitude,attitude,and position dynamics become separately designed and tuned.To work around the repetitive and time-consuming trial-error-based procedures,all FTSM controllers’parameters for only altitude and attitude dynamics are systematically tuned thanks to the proposed GWO metaheuristic.Such a hard and complex tuning task is formulated as a nonlinear optimization problem under operational constraints.The performance and robustness of the GWO-based control strategy are compared to those based on homologous metaheuristics and standard terminal sliding mode approaches.Numerical simulations are carried out to show the effectiveness and superiority of the proposed GWO-tuned FTSM controllers for the altitude and attitude dynamics’stabilization and tracking.Nonparametric statistical analyses revealed that the GWO algorithm is more competitive with high performance in terms of fastness,non-premature convergence,and research exploration/exploitation capabilities. 展开更多
关键词 QUADROTOR cascade control fast terminal sliding mode control grey wolf optimizer nonparametric Friedman analysis
下载PDF
Novel Logarithmic Non-Singular Terminal Sliding Mode and ItsApplication in Attitude Control of QTR
13
作者 Haibo Liu Heping Wang Junlei Sun 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第5期51-59,共9页
In this study we mainly focus on the attitude control problem of a quad tilt rotor aircraft with respect to unknown external disturbance. We propose a class of control methods based on a novel logarithmic fast non sin... In this study we mainly focus on the attitude control problem of a quad tilt rotor aircraft with respect to unknown external disturbance. We propose a class of control methods based on a novel logarithmic fast non singular terminal sliding surface a new fast reaching law and extended state disturbance observer. A logarithmic non singular terminal sliding surface is used owing to its convergence in finite time and significant robustness. A fast reaching law with two order characteristics of the sliding mode is designed. This reaching law can be used reduce the convergence time of traditional reaching law. In addition the extended state disturbance observer is utilized for online estimation and to compensate for system disturbance. The simulation experiment results show that the control strategy proposed in this paper outperforms the traditional non singular fast sliding mode control. 展开更多
关键词 TILT rotor nonsingular sliding mode CONTROL attitude CONTROL REACHING law extended state disturbance observer
下载PDF
A Sliding Mode Approach to Enhance the Power Quality of Wind Turbines Under Unbalanced Voltage Conditions 被引量:2
14
作者 Mohammad Javad Morshed Afef Fekih 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期566-574,共9页
An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, an... An integral terminal sliding mode-based control design is proposed in this paper to enhance the power quality of wind turbines under unbalanced voltage conditions. The design combines the robustness, fast response, and high quality transient characteristics of the integral terminal sliding mode control with the estimation properties of disturbance observers. The controller gains were auto-tuned using a fuzzy logic approach.The effectiveness of the proposed design was assessed under deep voltage sag conditions and parameter variations. Its dynamic response was also compared to that of a standard SMC approach.The performance analysis and simulation results confirmed the ability of the proposed approach to maintain the active power,currents, DC-link voltage and electromagnetic torque within their acceptable ranges even under the most severe unbalanced voltage conditions. It was also shown to be robust to uncertainties and parameter variations, while effectively mitigating chattering in comparison with the standard SMC. 展开更多
关键词 Doubly fed induction generators(DFIG) fuzzy approach integral terminal sliding mode control(ITSMC) observer power quality voltage unbalances wind turbines
下载PDF
Observer-Based Control for a Cable-Driven Aerial Manipulator under Lumped Disturbances 被引量:1
15
作者 Li Ding Yong Yao Rui Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1539-1558,共20页
With the increasing demand for interactive aerial operations,the application of aerial manipulators is becoming more promising.However,there are a few critical problems on how to improve the energetic efficiency and p... With the increasing demand for interactive aerial operations,the application of aerial manipulators is becoming more promising.However,there are a few critical problems on how to improve the energetic efficiency and pose control of the aerialmanipulator forpractical application.In this paper,a novel cable-drivenaerialmanipulatorused for remote water sampling is proposed and then its rigid-flexible coupling dynamics model is constructed which takes joint flexibility into account.To achieve high precision joint position tracking under lumped disturbances,a newly controller,which consists of three parts:linear extended state observer,adaptive super-twisting strategy,and fractional-order nonsingular terminal sliding mode control,is proposed.The linear extended state observer is adopted to approximate unmeasured states and unknown lumped disturbances and achieve model-free control structure.The adaptive super-twisting strategy and fractional-order nonsingular terminal sliding mode control are combined together to achieve good control performance and counteract chattering problem.The Lyapunovmethod is utilized to prove the overall stability and convergence of the system.Lastly,various visualization simulations and ground experiments are conducted,verifying the effectiveness of our strategy,and all outcomes demonstrate its superiorities over the existing control strategies. 展开更多
关键词 Aerial manipulator CABLE-DRIVEN adaptive super-twisting linear extend state observer fractional-order nonsingular terminal sliding mode
下载PDF
Robust Nonsingular Fixed Time Terminal Sliding Mode Control for Atmospheric Pollution Detection Lidar Scanning Mechanism
16
作者 KANG Yu YANG Yuxiao +2 位作者 CHEN Cai LüWenjun ZHAO Yunbo 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2023年第2期500-523,共24页
A robust nonsingular fixed time terminal sliding mode control scheme with a time delay disturbance observer is proposed for atmospheric pollution detection lidar scanning mechanism(APDL-SM)system.Distinguished from th... A robust nonsingular fixed time terminal sliding mode control scheme with a time delay disturbance observer is proposed for atmospheric pollution detection lidar scanning mechanism(APDL-SM)system.Distinguished from the conventional terminal sliding mode control methods,the authors design a novel fixed-time terminal sliding surface,the convergence time of sliding mode phase of which has a constant upper bound that is designable by adjusting only one parameter.Moreover,in order to overcome the problem of unknown upper bound of lumped uncertainty including model uncertainty,friction effect and external disturbances from the port environment,the authors propose a time delay disturbance observer to provide an estimation for the system lumped uncertainty.By using the Lyapunov synthesis,the explicit analysis of the convergence time upper bound are performed.Finally,simulation studies are conducted on the APDL-SM system to show the fast convergence rate and strong robustness of the proposed control scheme. 展开更多
关键词 Atmospheric pollution detection lidar fixed time terminal sliding mode time delay disturbance observer tracking control
原文传递
无人机舵面故障高阶滑模重构观测器设计及主动容错控制
17
作者 刘勇求 刘晓峰 《火力与指挥控制》 CSCD 北大核心 2024年第4期170-176,共7页
针对无人机舵面损伤故障容错问题,提出了基于二阶非奇异终端滑模重构观测器及主动容错设计方法。在分析舵面正常偏转运动学和动力学特性基础上,构建了无人机典型舵面故障非线性特性模型。提出无人机舵面故障的高阶滑模重构滑模观测器设... 针对无人机舵面损伤故障容错问题,提出了基于二阶非奇异终端滑模重构观测器及主动容错设计方法。在分析舵面正常偏转运动学和动力学特性基础上,构建了无人机典型舵面故障非线性特性模型。提出无人机舵面故障的高阶滑模重构滑模观测器设计方案;引入线性变换降维简化观测器设计程式;将终端滑模和非奇异终端滑模结合起来,实现滑模运动有限时间快速收敛;综合自适应律、线性矩阵不等式设计观测器系数矩阵,确保状态估计偏差有界稳定。提出集状态与故障重构于一体的主动容错控制方案,并通过仿真算例检验所提方案的有效性。 展开更多
关键词 舵面故障 二阶非奇异终端滑模 无人机 主动容错 观测器
下载PDF
PMSM无模型超螺旋快速积分终端滑模控制
18
作者 赵凯辉 谯梦洁 +3 位作者 吕玉映 游鑫 张昌凡 郑剑 《电子测量与仪器学报》 CSCD 北大核心 2024年第5期64-74,共11页
针对永磁同步电机运行过程中因模型不确定、参数摄动和外部扰动等因素的影响,从而导致驱动系统性能下降的问题,提出一种新型控制策略。首先,为减少对系统数学模型的依赖,构建了一个新的超局部模型,用于描述永磁同步电机的转速环。其次,... 针对永磁同步电机运行过程中因模型不确定、参数摄动和外部扰动等因素的影响,从而导致驱动系统性能下降的问题,提出一种新型控制策略。首先,为减少对系统数学模型的依赖,构建了一个新的超局部模型,用于描述永磁同步电机的转速环。其次,基于转速环的新型超局部模型,结合一种新型积分终端滑模面和改进超螺旋控制律来设计新型无模型超螺旋快速积分终端滑模控制器,实现了对转速的精确控制。再次,采用非奇异快速终端滑模面和双幂次趋近律设计改进扩展非奇异终端滑模扰动观测器,通过精确观测和前馈补偿未知扰动,有效地抑制参数摄动和外部扰动,增强了系统鲁棒性,提高系统的动态性能和稳态性能。最后,通过与传统控制方法的仿真和实验对比,证实所提算法转速抗超调能力提升为0.412 5%,转矩快速响应能力提升0.013 s。结果表明当存在未知扰动时,所提方法具有较强的鲁棒性和良好的抗干扰性。 展开更多
关键词 永磁同步电机 无模型超螺旋快速积分终端滑模控制器 扩展非奇异终端滑模扰动观测器
下载PDF
基于改进非线性滑模控制的轮式机器人轨迹跟踪
19
作者 杨光永 陈旭东 +1 位作者 徐天奇 蔡艳 《组合机床与自动化加工技术》 北大核心 2024年第9期67-70,75,共5页
针对轮式机器人的轨迹跟踪控制存在的问题,设计了一种改进非线性快速终端滑模控制器(improved nonlinear fast terminal sliding mode controller,INFTSMC)的控制方案。首先,通过对轮式机器人运动学的分析建立了轨迹跟踪误差模型;其次,... 针对轮式机器人的轨迹跟踪控制存在的问题,设计了一种改进非线性快速终端滑模控制器(improved nonlinear fast terminal sliding mode controller,INFTSMC)的控制方案。首先,通过对轮式机器人运动学的分析建立了轨迹跟踪误差模型;其次,在设计滑模控制器阶段,针对非线性快速终端滑模控制器存在奇异点,采用一种新的滑模面幂指数时变策略来设计非奇异终端滑模控制器,解决了非线性快速终端滑模控制器奇异问题,通过构造Lyapunov函数进行稳定性分析证明了该策略的稳定性,并且进行收敛时间分析给出系统从任意初始状态收敛至平衡点所需要的时间;然后,在新的滑模面幂指数时变策略的基础上设计了轮式机器人线速度和角速度控制律,使得轮式机器人轨迹跟踪误差快速收敛至0,实现了移动机器人对期望轨迹的快速跟踪。通过仿真实验与非线性快速终端滑模控制器和传统滑模控制其进行对比,验证了改进非线性快速终端滑模控制器的优越性。 展开更多
关键词 轮式机器人 轨迹跟踪 快速终端滑模控制 时变幂指数 非奇异滑模控制
下载PDF
全超导托卡马克核聚变发电装置快控电源的干扰抑制离散积分滑模电流控制
20
作者 黄海宏 陈昭 王海欣 《电工技术学报》 EI CSCD 北大核心 2024年第10期3141-3151,共11页
全超导托卡马克核聚变发电装置(EAST)快控电源的首要性能指标是快速跟踪参考信号,以输出电流实现负载线圈的励磁,对等离子体的垂直位移进行反馈控制。EAST快控电源负载线圈受装置内部部件和真空内等离子体的影响,线圈感值会出现小范围... 全超导托卡马克核聚变发电装置(EAST)快控电源的首要性能指标是快速跟踪参考信号,以输出电流实现负载线圈的励磁,对等离子体的垂直位移进行反馈控制。EAST快控电源负载线圈受装置内部部件和真空内等离子体的影响,线圈感值会出现小范围内慢时变波动以及线圈上存在互感电动势干扰,传统比例-积分(PI)控制方法在电流跟踪控制过程中存在不足。为了实现干扰的抑制和应对负载波动,提出一种带干扰抑制的离散积分滑模控制方法,根据系统状态方程设计离散积分滑模控制器,结合滑模干扰观测器实现集总干扰的观测,对集总干扰进行前馈补偿控制。为了抑制抖振和加快收敛速度,设计一种新型平滑饱和函数和增益自适应观测器,根据观测电流误差和跟踪电流误差自适应调整观测器增益。对比传统PI控制,仿真和实验验证了所提控制方法具有更加优良的电流跟踪特性,在输出电流超调更小的情况下动态响应更快,能够有效地抑制负载侧扰动,具有良好的鲁棒性。 展开更多
关键词 EAST快控电源 离散积分 滑模控制 滑模干扰 观测器前馈补偿
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部