期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Decoupled nonsingular terminal sliding mode control for affine nonlinear systems 被引量:1
1
作者 Yueneng Yang Ye Yan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期192-200,共9页
A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is p... A decoupled nonsingular terminal sliding mode control(DNTSMC) approach is proposed to address the tracking control problem of affine nonlinear systems.A nonsingular terminal sliding mode control(NTSMC) method is presented,in which the nonsingular terminal sliding surface is defined as a special nonsingular terminal function and the convergence time of the system states can be specified.The affine nonlinear system is firstly decoupled into linear subsystems via feedback linearization.Then,a nonsingular terminal sliding surface is defined and the NTSMC method is applied to each subsystem separately to ensure the finite time convergence of the closed-loop system.The verification example is given to demonstrate the effectiveness and robustness of the proposed approach.The proposed approach exhibits a considerable advantage in terms of faster tracking error convergence and less chattering compared with the conventional sliding mode control(CSMC). 展开更多
关键词 nonlinear control feedback linearization terminal sliding mode control nonsingular affine nonlinear system.
下载PDF
On-line RNN compensated second order nonsingular terminal sliding mode control for hypersonic vehicle 被引量:1
2
作者 Ruimin Zhang Li Wang Yingjiang Zhou 《International Journal of Intelligent Computing and Cybernetics》 EI 2012年第2期186-205,共20页
Purpose–The purpose of this paper is to design a robust control scheme to achieve robust tracking of velocity and altitude commands for a general hypersonic vehicle(HSV)in the presence of parameter variations and ext... Purpose–The purpose of this paper is to design a robust control scheme to achieve robust tracking of velocity and altitude commands for a general hypersonic vehicle(HSV)in the presence of parameter variations and external disturbances.Design/methodology/approach–The robust control scheme is composed of nonsingular terminal sliding mode control(NTSMC),super twisting control algorithm(STC)and recurrent neural network(RNN).First,by combing a novel NTSMC and STC algorithm,a second order NTSMC approach for HSV is proposed to provide fast,continuous and high precision tracking control.Second to relax the requirements for the bounds of the lumped uncertainties in control design,a RNN disturbance observer is presented to increase the robustness of the control system.The weights of RNN are updated by adaptive laws based on Lyapunov theorem,thus the closed-loop stability can be guaranteed.Findings–Simulation results demonstrate that the proposed method is effective,leading to promising performance.Originality/value–The main contributions of this work are:first,both parameter variations and external disturbances are considered in control design for the longitudinal dynamic model of HSV;and second,the proposed controller can remove chattering and achieve more favorable tracking performances than conventional sliding mode control. 展开更多
关键词 nonsingular terminal sliding mode control Hypersonic vehicle Super twisting control algorithm Recurrent neural network Second order sliding mode control Hypersonic flow Neural nets
原文传递
Nonsingular Fast Terminal Sliding Mode Control Based on Nonlinear Disturbance Observer for a Quadrotor 被引量:1
3
作者 ZHAO Jing WANG Peng +2 位作者 SUN Yanfei XU Fengyu XIE Fei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2022年第2期219-230,共12页
Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is ... Given external disturbances and system uncertainties,a nonsingular fast terminal sliding mode control(NFTSMC)method integrated a nonlinear disturbance observer(NDO)is put forward for quadrotor aircraft.First,a NDO is proposed to estimate the actual values of uncertainties and disturbances.Second,the NFTSM controller based on the reaching law is designed for the attitude subsystem(inner loop),and the control strategy can ensure Euler angles’fast convergence and stability of the attitude subsystem.Moreover,the NFTSMC strategy combined with backstepping is proposed for the position subsystem(outer loop),which can ensure subsystem tracking performance.Finally,comparative simulations show the trajectory tracking performance of the proposed method is superior to that of the traditional sliding mode control(SMC)and the SM integral backstepping control under uncertainties and disturbances. 展开更多
关键词 quadrotor aircraft nonlinear disturbance observer(NDO) nonsingular fast terminal sliding mode control(NFTSMC) disturbances
下载PDF
Terminal Sliding Mode Fuzzy Control Based on Multiple Sliding Surfaces for Nonlinear Ship Autopilot Systems 被引量:2
4
作者 袁雷 吴汉松 《Journal of Marine Science and Application》 2010年第4期425-430,共6页
A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the p... A terminal sliding mode fuzzy control based on multiple sliding surfaces was proposed for ship course tracking steering, which takes account of rudder characteristics and parameter uncertainty. In order to solve the problem, the controller was designed by employing the universal approximation property of fuzzy logic system, the advantage of Nussbaum function, and using multiple sliding mode control algorithm based on the recursive technique. In the last step of designing, a nonsingular terminal sliding mode was utilized to drive the last state of the system to converge in a finite period of time, and high-order sliding mode control law was designed to eliminate the chattering and make the system robust. The simulation results showed that the controller designed here could track a desired course fast and accurately. It also exhibited strong robustness peculiarly to system, and had better adaptive ability than traditional PID control algorithms. 展开更多
关键词 ship course control unmatched uncertainty multiple sliding mode control nonsingular terminal sliding mode control ROBUSTNESS
下载PDF
Non-Negative Adaptive Mechanism-Based Sliding Mode Control for Parallel Manipulators with Uncertainties
5
作者 Van-Truong Nguyen 《Computers, Materials & Continua》 SCIE EI 2023年第2期2771-2787,共17页
In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators... In this paper,a non-negative adaptive mechanism based on an adaptive nonsingular fast terminal sliding mode control strategy is proposed to have finite time and high-speed trajectory tracking for parallel manipulators with the existence of unknown bounded complex uncertainties and external disturbances.The proposed approach is a hybrid scheme of the online non-negative adaptive mechanism,tracking differentiator,and nonsingular fast terminal sliding mode control(NFTSMC).Based on the online non-negative adaptive mechanism,the proposed control can remove the assumption that the uncertainties and disturbances must be bounded for the NFTSMC controllers.The proposed controller has several advantages such as simple structure,easy implementation,rapid response,chattering-free,high precision,robustness,singularity avoidance,and finite-time convergence.Since all control parameters are online updated via tracking differentiator and non-negative adaptive law,the tracking control performance at high-speed motions can be better in real-time requirement and disturbance rejection ability.Finally,simulation results validate the effectiveness of the proposed method. 展开更多
关键词 Parallel manipulator uncertainties and disturbances nonsingular fast terminal sliding mode control non-negative adaptive mechanism tracking differentiator
下载PDF
Three-dimensional impact angle constrained distributed cooperative guidance law for anti-ship missiles 被引量:7
6
作者 LI Wei WEN Qiuqiu +1 位作者 HE Lei XIA Qunli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期447-459,共13页
This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired... This paper investigates the problem of distributed cooperative guidance law design for multiple anti-ship missiles in the three-dimensional(3-D)space hitting simultaneously the same target with considering the desired terminal impact angle constraint.To address this issue,the problem formulation including 3-D nonlinear mathematical model description,and communication topology are built firstly.Then the consensus variable is constructed using the available information and can reach consensus under the proposed acceleration command along the line-of-sight(LOS)which satisfies the impact time constraint.However,the normal accelerations are designed to guarantee the convergence of the LOS angular rate.Furthermore,consider the terminal impact angle constraints,a nonsingular terminal sliding mode(NTSM)control is introduced,and a finite time convergent control law of normal acceleration is proposed.The convergence of the proposed guidance law is proved by using the second Lyapunov stability method,and numerical simulations are also conducted to verify its effectiveness.The results indicate that the proposed cooperative guidance law can regulate the impact time error and impact angle error in finite time if the connecting time of the communication topology is longer than the required convergent time. 展开更多
关键词 distributed cooperative guidance law impact angle constraint communication topology nonsingular terminal sliding mode(NTSM)control finite time convergent
下载PDF
Optimised trajectory tracking control for quadrotors based on an improved beetle antennae search algorithm
7
作者 Zhe Lin Ping Li Zhaoqi Zhang 《Journal of Control and Decision》 EI 2023年第3期382-392,共11页
This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references ... This paper focuses on the trajectory tracking of quadrotors under bounded external disturbances.An optimised robust controller is proposed to drive the position and attitude ofa quadrotor converge to their references quickly. At first, nonsingular fast terminal slidingmode control is developed, which can guarantee not only the stability but also finite-timeconvergence of the closed-loop system. As the parameters of the designed controllers playa vital role for control performance, an improved beetle antennae search algorithm is proposedto optimise them. By employing the historical information of the beetle’s antennaeand dynamically updating the step size as well as the range of its searching, the optimisingis accelerated considerably to ensure the efficiency of the quadrotor control. The superiorityof the proposed control scheme is demonstrated by simulation experiments, from whichone can see that both the error and the overshooting of the trajectory tracking are reducedeffectively. 展开更多
关键词 Quadrotor control trajectory tracking nonsingular fast terminal sliding mode control optimisation improved beetle antennae search algorithm
原文传递
An adaptive fast fixed-time guidance law with an impact angle constraint for intercepting maneuvering targets 被引量:18
8
作者 Yao ZHANG Shengjing TANG Jie GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第6期1327-1344,共18页
Sliding mode guidance laws based on a conventional terminal sliding mode guarantees only finite-time convergence, which verifies that the settling time is required to be estimated by selecting appropriate initial laun... Sliding mode guidance laws based on a conventional terminal sliding mode guarantees only finite-time convergence, which verifies that the settling time is required to be estimated by selecting appropriate initial launched conditions. However, rapid convergence to a desired impact angle within a uniform bounded finite time is important in most practical guidance applications. A uniformly finite-time/fixed-time convergent guidance law means that the convergence(settling) time is predefined independently on initial conditions, that is, a closed-loop convergence time can be estimated a priori by guidance parameters. In this paper, a novel adaptive fast fixed-time sliding mode guidance law to intercept maneuver targets at a desired impact angle from any initial heading angle,with no problems of singularity and chattering, is designed. The proposed guidance law achieves system stabilization within bounded settling time independent on initial conditions and achieves more rapid convergence than those of fixed-time stable control methods by accelerating the convergence rate when the system is close to the origin. The achieved acceleration-magnitude constraints are rigorously enforced, and the chattering-free property is guaranteed by adaptive switching gains.Extensive numerical simulations are presented to validate the efficiency and superiority of the proposed guidance law for different initial engagement geometries and impact angles. 展开更多
关键词 Adaptive gain tuning Fixed-time convergence Impact angle constraint Missile guidance nonsingular terminal sliding mode control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部