The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic perfo...The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.展开更多
Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design s...Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum (NRSc) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes (PGA, PGV, PGD) in different period regions. And a consecutive function./(/) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSc are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra (NRSA, NRSv, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSc is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.展开更多
The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS...The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.展开更多
This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target respo...This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target response spectrum of absolute acceleration. First, based on traditional methods that match the target spectrum in the frequency domain, an initial acceleration time history was synthesized to satisfy the specified peak acceleration, target spectral acceleration and intensity envelope. Second, by using the inversion formula of the seismic input to a linear single-degree-of-freedom system and by superimposing a series of narrow-band time histories in the time domain, the initial time history is further modified to allow its peak velocity and displacement to approach the targets and improve its matching precision with the target spectrum. Numerical examples are provided to demonstrate that the proposed method achieves good agreement with the target values.展开更多
It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB...It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from exten-sional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94′s prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99′s one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the pre-diction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then re-gional differences of prediction equation will become much less, even vanish, and it can be constructed the uni-versal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99).展开更多
Aiming at the seismic-resistant performance of cable-supported glass curtain walls,the methods for formulating nonlinear single degree of freedom system and calculating the nonlinear response spectrums are proposed. T...Aiming at the seismic-resistant performance of cable-supported glass curtain walls,the methods for formulating nonlinear single degree of freedom system and calculating the nonlinear response spectrums are proposed. Taking pretension effect in cables and geometrical nonlinearity into account,the nonlinear acceleration spectrums are calculated under given conditions,such as site and different seismic fortification intensities. The seismic design response spectrums are developed. During vibrating,varying period due to the influence of pretension effect in cables and geometrical nonlinearity drives the maximum period of plateau in nonlinear response spectrums to move towards the long period zone,and the maximum of seismic effect coefficient is larger than that of current seismic code. The theoretical analysis and the example demonstrate that using the nonlinear response spectrums is safe and economical.展开更多
Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irre...Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irregular shape of structure by using STAAD PRO. And the comparison results are studied and compared accounting for the earthquake characteristics and the structure dynamic characteristics. As the results show that the earthquake response peak values and the main response frequencies are very close and comparable. It can be referred to by the engineering applications.展开更多
Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seism...Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.展开更多
The seismic intensity attenuation relations in northeastern Tibetan Plateau region are established by a regression analysis on isoseismal data. Then the attenuation relations for horizontal peak ground acceleration an...The seismic intensity attenuation relations in northeastern Tibetan Plateau region are established by a regression analysis on isoseismal data. Then the attenuation relations for horizontal peak ground acceleration and short-period response spectrum for western North America are derived based on the database of HUO Jun-rong and strong mo-tion data from recent earthquakes. The attenuation relations of long-period response spectrum for western North America are developed by analyzing the broadband digital seismic recordings of southern California. By integrat-ing the short-period and long-period attenuation relationships, the attenuation relations for horizontal acceleration response spectrum in the period range of 0.04~6 s for western North America are established. The attenuation equation that accounts for the magnitude saturation and near-field saturation of high frequency ground motion is used. Finally the attenuation relations for horizontal peak ground acceleration and response spectrum for the region of northeastern Tibetan Plateau are developed by using the transforming method.展开更多
This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2...This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.展开更多
A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic respo...A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic response caused by the inconsistent motions of the structural supports,and the second is the structural dynamic response to ground motion accelerations.This method is formally consistent with the classical response spectrum method,and the effects of multisupport excitation are considered for any modal response spectrum or modal superposition.If the seismic inputs at each support are the same,the support displacements caused by the pseudostatic response become rigid body displacements.The response spectrum in the case of multisupport excitations then reduces to that for uniform excitations.In other words,this multisupport response spectrum method is a modification and extension of the existing response spectrum method under uniform excitation.Moreover,most of the coherency coefficients in this formulation are simplified by approximating the ground motion excitation as white noise.The results indicate that this simplification can reduce the calculation time while maintaining accuracy.Furthermore,the internal forces obtained by the multisupport response spectrum method are compared with those produced by the traditional response spectrum method in two case studies of existing long-span structures.Because the effects of inconsistent support displacements are not considered in the traditional response spectrum method,the values of internal forces near the supports are underestimated.These regions are important potential failure points and deserve special attention in the seismic design of reticulated structures.展开更多
The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sa...The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sample of four buildings with reported analysis of comparison between IBC and UBC is taken for confirming the comparison. Eight sample places from SBC map for Saudi Arabia together with two sample places of high seismic activity in USA were taken for the comparisons. The study used software package ETABS in this study for modeling and analysis. The results are dissimilar from the comparisons reported for test places of USA. It is concluded that at most places SBC base shear is higher for both ELFP and MRSA. However, the results cannot be generalized and considered always right. The same is factual for overturning moments. Consequently, we cannot report that SBC is more conservative than UBC for all scenarios.展开更多
The statistical characteristics of strong ground motion specified by response spectrum and power spectral density function are studied using 190 strong-motion records of the Haicheng and Tangshan earthquakes in China ...The statistical characteristics of strong ground motion specified by response spectrum and power spectral density function are studied using 190 strong-motion records of the Haicheng and Tangshan earthquakes in China and 138 earthquakes in the western United States.The response spectrum is normalized by the peak ground acceleration(i.e.,represented as spectral magnification factor),and the power spectral density function is described by the Kanai-Tajimi spectrum.The statistics and dependence of parameters are evaluated,and correlations between the spectral magnification factor or Kanai-Tajimi spectral parameters and the site condition,epicentral distance,or local magnitude are investigated.The statistical characteristics of spectra China and the U.S.A.are compared.Based on the results obtained the values of the statistics on spectral parameters for earthquake engineering applications in China are suggested.展开更多
The building code of any country is considered to be a basic technical guidance document for the seismic design of structures.However,building codes are typically developed for the whole country,without considering si...The building code of any country is considered to be a basic technical guidance document for the seismic design of structures.However,building codes are typically developed for the whole country,without considering site specific models that incorporate detailed site-specific data.Therefore,the adequacy of the design spectrum for building codes may sometimes be questionable.To study the sufficiency of the building codes of Pakistan(BCP-SP-2007),a deterministic seismic hazard analysis(DSHA)based spectrum was developed for a site in the Muzaffargarh area,Pakistan,using an updated earthquake catalogue,seismic source model,and a next generation attenuation model(NGA-WEST-2).Further,an International Building Code(IBC-2000)spectrum was developed for the study area to compare the results.The DSHA-based response spectrum resulted in a peak ground acceleration(PGA)value of 0.21 g for the Chaudwan fault.The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins.A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000.However,special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s,and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12-0.64 s.Finally,BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.展开更多
Two kinds of determining methods for scenario earthquakes are presented in this paper,namely the weighted average method and maximum probability method. This paper briefly introduces the two methods,then taking a high...Two kinds of determining methods for scenario earthquakes are presented in this paper,namely the weighted average method and maximum probability method. This paper briefly introduces the two methods,then taking a high-rise building in the Yantai area as a case study,we use the weighted average method and maximum probability method to realize seismic hazard analysis, determine earthquake magnitude, the epicenter and specific space position,and then give two response spectrums of the two methods. By comparing the differences of response spectrums between the two methods,we find that the weighted average method is more suitable for long period structures,while considering long period safety. The maximum probability method is more suitable for short period structures. It is reasonable to choose a corresponding different method when the structures have different natural vibration periods.展开更多
Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced ...Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.展开更多
Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application ...Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.展开更多
The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the ta...The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the target spectrum is a smooth curve. In many cases, it needs to match unsmooth target spectrum for single determined response spectrum. An adjustment of time history via wavelet packet transform was presented, which is able to fit unsmooth target spectrum. It was found that there is a certain bias between the band center frequency of the component of seismic record after wavelet packet decomposition and the peak frequency of response spectra of wavelet packet components. For this reason, five strategies were presented to select iteration points, and the effects of the five strategies were compared with two calculation examples. It was turned out that the peak frequency of the response spectrum of wavelet packet component can lead to good fitting effect when it is selected as the iteration point. In the iteration process, it shows great promise in fitting non-smooth target spectrum and has a trend of converge.展开更多
It was shown from the study on the recently near-fault earthquake ground motions that the near-fault effects were seldom considered in the existing Chinese seismic code. Referring to the UBC97 design concept for near-...It was shown from the study on the recently near-fault earthquake ground motions that the near-fault effects were seldom considered in the existing Chinese seismic code. Referring to the UBC97 design concept for near-fault factors, based on the collected world-widely free-site records of near-fault earthquakes ground motions classified by earthquake magnitude and site condition, the attenuation relationship expressions of the acceleration spectrum demand at the key points within the long period and moderate period were established in term of the earthquake magnitude and the site condition. Furthermore, the near-fault factors' expressions about the earthquake magnitude and the fault distance were deduced for the area lack of near-fault strong earthquake records. Based on the current Chinese Building Seismic Design Code, the near-fault effect factors and the modified design spectral curves, which were valuable for the seismic design, were proposed to analyze the seismic response of structures.展开更多
Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statistical noise and other factors tha...Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statistical noise and other factors that collectively cause the alpha spectrum to exhibit a well-known low-energy tail.Therefore,the estabUshment of an alpha spectrum detector response function from the perspective of a signaling system must consider the various factors mentioned above.The detector response function is the convolution of an alphaparticle pulse function,two exponential functions,and a Gaussian function,followed by calculation of the parameters of the detector response function using the weighted leastsquares fitting method as proposed in this paper.In our experiment,^(239)Pu alpha spectra were measured by a highresolution,passivated implanted planar silicon(PIPS)detector at 10 levels of vacuum and 10 source-detector distances.The spectrum-fitting results were excellent as evaluated by reduced Chi-square(x^2) and correlation coefficients.Finally,the variation of parameters with vacuum level and source-detector distance was studied.Results demonstrate that σ,τ_1,and τ_2 exhibit no obvious trend of variation with vacuum in the range 2000-20,000 mTorr,and at a confidence level of 95%,the values of τ_1 and τ_2 decline in a similar fashion with source-detector distance by the power exponential function,while the value of a declines linearly.展开更多
基金National Natural Science Foundation of China under Grant Nos.51427901 and 51678407Tianjin Municipal Education Commission under Grant No.2021KJ055Fundamental Research Funds for the Central Universities of China under Grant No.2000560616。
文摘The effects of ground motion spatial variability(GMSV)or fluid-structure interaction(FSI)on the seismic responses of deep-water bridges have been extensively examined.However,there are few studies on the seismic performance of bridges considering GMSV and FSI effects simultaneously.In this study,the original multiple-support response spectrum(MSRS)method is extended to consider FSI effect for seismic analysis of deep-water bridges.The solution of hydrodynamic pressure on a pier is obtained using the radiation wave theory,and the FSI-MSRS formulation is derived according to the random vibration theory.The influence of FSI effect on the related coefficients is analyzed.A five-span steel-concrete continuous beam bridge is adopted to conduct the numerical simulations.Different load conditions are designed to investigate the variation of the bridge responses when considering the GMSV and FSI effects.The results indicate that the incoherence effect and wave passage effect decrease the bridge responses with a maximum percentage of 86%,while the FSI effect increases the responses with a maximum percentage of 26%.The GMSV and FSI effects should be included in the seismic design of deep-water bridges.
基金The Major Research Plan of National Natural Science foundation of China under Grant No.91215301National Natural Science Foundation of China under Grant Nos.51178152,51238012+1 种基金Natural Scientific Research Innovation Foundation in Harbin Institute of Technology under Grant No.HIT.NSRIF.2011115Harbin Institute of Technology Key Innovation Scheme Training Project under Grant No.HIT.KISTP.2014033
文摘Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum (NRSc) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes (PGA, PGV, PGD) in different period regions. And a consecutive function./(/) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSc are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra (NRSA, NRSv, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSc is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.
基金funded by the National Natural Science Foundation of China under grant No.50578125
文摘The rotational seismic motions are estimated from one station records of the 1999 Jiji (Chi-Chi), Taiwan, earthquake based on the theory of elastic plane wave propagation. The time-frequency response spectrum (TFRS) of the rotational motions is calculated and its characteristics are analyzed, then the TFRS is applied to analyze the damage mechanism of one twelve-storey frame concrete structure. The results show that one of the ground motion components can not reflect the characteristics of the seismic motions completely; the characteristics of each component, especially rotational motions, need to be studied. The damage line of the structure and TFRS of ground motion are important for seismic design, only the TFRS of input seismic wave is suitable, the structure design is reliable.
基金National Natural Science Foundation of ChinaUnder Grant No.50278090
文摘This article describes a hybrid simulation method to generate artificial ground motion time histories that are compatible with specified peak seismic acceleration, velocity and displacement as well as the target response spectrum of absolute acceleration. First, based on traditional methods that match the target spectrum in the frequency domain, an initial acceleration time history was synthesized to satisfy the specified peak acceleration, target spectral acceleration and intensity envelope. Second, by using the inversion formula of the seismic input to a linear single-degree-of-freedom system and by superimposing a series of narrow-band time histories in the time domain, the initial time history is further modified to allow its peak velocity and displacement to approach the targets and improve its matching precision with the target spectrum. Numerical examples are provided to demonstrate that the proposed method achieves good agreement with the target values.
基金National Natural Science Foundation of China (49874010)
文摘It has been analyzed the influence of the tectonic ambient shear stress value on response spectrum based on the previous theory. Based on the prediction equation BJF94 presented by the famous American researchers, CLB20, a new prediction formula is proposed by us, where it is introduced the influence of tectonic ambient shear stress value on response spectrum. BJF94 is the prediction equation, which mainly depends on strong ground motion data from western USA, while the prediction equation SEA99 is based on the strong ground motion data from exten-sional region all over the world. Comparing these two prediction equations in detail, it is found that after BJF94′s prediction value lg(Y) minus 0.16 logarithmic units, the value is very close to SEA99′s one. This case demonstrates that lg(Y) in extensional region is smaller; the differences of prediction equation are mainly owe to the differences of tectonic ambient shear stress value. If the factor of tectonic ambient shear stress value is included into the pre-diction equation, and the magnitude is used seismic moment magnitude to express, which is universal used around the world, and the distance is used the distance of fault project, which commonly used by many people, then re-gional differences of prediction equation will become much less, even vanish, and it can be constructed the uni-versal prediction equation proper to all over the world. The error in the earthquake-resistant design in China will be small if we directly use the results of response spectrum of USA (e.g. BJF94 or SEA99).
基金the National Natural Science Foundation of China (Grant No. 50478028).
文摘Aiming at the seismic-resistant performance of cable-supported glass curtain walls,the methods for formulating nonlinear single degree of freedom system and calculating the nonlinear response spectrums are proposed. Taking pretension effect in cables and geometrical nonlinearity into account,the nonlinear acceleration spectrums are calculated under given conditions,such as site and different seismic fortification intensities. The seismic design response spectrums are developed. During vibrating,varying period due to the influence of pretension effect in cables and geometrical nonlinearity drives the maximum period of plateau in nonlinear response spectrums to move towards the long period zone,and the maximum of seismic effect coefficient is larger than that of current seismic code. The theoretical analysis and the example demonstrate that using the nonlinear response spectrums is safe and economical.
文摘Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. In this paper, the response spectrum analysis is performed on two different shapes i.e. regular and irregular shape of structure by using STAAD PRO. And the comparison results are studied and compared accounting for the earthquake characteristics and the structure dynamic characteristics. As the results show that the earthquake response peak values and the main response frequencies are very close and comparable. It can be referred to by the engineering applications.
基金founded by the Earthquake Science and Technology Spark Plan of China(XH12063)
文摘Characteristic period is an important parameter of the seismic design response spectrum. There is important theoretical significance and engineering application value to the study of the characteristic period of seismic design response spectrum of ultra high voltage (UHV) electrical equipment. In this paper, 1448 horizontal earthquake records within the world scope including the United States and Japan for Site Class m were analyzed. Results show that both magnitude and epicentral distance have great influence on the characteristic period. About 80 % of characteristic periods of strong earthquake records are about 0. 9s. Statistical analysis was conducted on the seismic hazard assessment results of 312 projects of China in recent years, and it is found that about 70 % of characteristic periods are about 0. 9s. Combined with the related code comparison and analysis, it is suggested that the characteristic period of the seismic design response spectrmn of UHV electrical equipment should select 0. 9s in order to effectively guarantee the seismic safety of UHV electrical equipment.
基金The Special Funds for Major State Basic Research Project under Grant No. 2002CB412706 and National Natural Science Foundation of China (40374017).
文摘The seismic intensity attenuation relations in northeastern Tibetan Plateau region are established by a regression analysis on isoseismal data. Then the attenuation relations for horizontal peak ground acceleration and short-period response spectrum for western North America are derived based on the database of HUO Jun-rong and strong mo-tion data from recent earthquakes. The attenuation relations of long-period response spectrum for western North America are developed by analyzing the broadband digital seismic recordings of southern California. By integrat-ing the short-period and long-period attenuation relationships, the attenuation relations for horizontal acceleration response spectrum in the period range of 0.04~6 s for western North America are established. The attenuation equation that accounts for the magnitude saturation and near-field saturation of high frequency ground motion is used. Finally the attenuation relations for horizontal peak ground acceleration and response spectrum for the region of northeastern Tibetan Plateau are developed by using the transforming method.
文摘This paper presents a comparison of the seismic forces generated from a Modal Response Spectrum Analysis (MRSA) by applying the provisions of two building codes, the 1997 Uniform Building Code (UBC) and the 2000-2009 International Building Code (IBC), to the most common ordinary residential buildings of standard occupancy. Considering IBC as the state of the art benchmark code, the primary concern is the safety of buildings designed using the UBC as compared to those designed using the IBC. A sample of four buildings with different layouts and heights was used for this comparison. Each of these buildings was assumed to be located at four different geographical sample locations arbitrarily selected to represent various earthquake zones on a seismic map of the USA, and was subjected to code-compliant response spectrum analyses for all sample locations and for five different soil types at each location. Response spectrum analysis was performed using the ETABS software package. For all the cases investigated, the UBC was found to be significantly more conservative than the IBC. The UBC design response spectra have higher spectral accelerations, and as a result, the response spectrum analysis provided a much higher base shear and moment in the structural members as compared to the IBC. The conclusion is that ordinary office and residential buildings designed using UBC 1997 are considered to be overdesigned, and therefore they are quite safe even according to the IBC provisions.
基金Major Program of National Science Foundation of China Under Grant No.90715005Program for New Century Excellent Talents in University Under Grant No. NCET-07-0186Doctoral Fund of Ministry of Education of China Under Grant No.200802860007
文摘A simplified multisupport response spectrum method is presented.The structural response is a sum of two components of a structure with a first natural period less than 2 s.The first component is the pseudostatic response caused by the inconsistent motions of the structural supports,and the second is the structural dynamic response to ground motion accelerations.This method is formally consistent with the classical response spectrum method,and the effects of multisupport excitation are considered for any modal response spectrum or modal superposition.If the seismic inputs at each support are the same,the support displacements caused by the pseudostatic response become rigid body displacements.The response spectrum in the case of multisupport excitations then reduces to that for uniform excitations.In other words,this multisupport response spectrum method is a modification and extension of the existing response spectrum method under uniform excitation.Moreover,most of the coherency coefficients in this formulation are simplified by approximating the ground motion excitation as white noise.The results indicate that this simplification can reduce the calculation time while maintaining accuracy.Furthermore,the internal forces obtained by the multisupport response spectrum method are compared with those produced by the traditional response spectrum method in two case studies of existing long-span structures.Because the effects of inconsistent support displacements are not considered in the traditional response spectrum method,the values of internal forces near the supports are underestimated.These regions are important potential failure points and deserve special attention in the seismic design of reticulated structures.
文摘The study uses an actual building to compare the modal response spectrum analysis results of Saudi Building Code (SBC) and the 1997 Uniform Building Code (UBC) used in Saudi Arabia before the introduction of SBC. A sample of four buildings with reported analysis of comparison between IBC and UBC is taken for confirming the comparison. Eight sample places from SBC map for Saudi Arabia together with two sample places of high seismic activity in USA were taken for the comparisons. The study used software package ETABS in this study for modeling and analysis. The results are dissimilar from the comparisons reported for test places of USA. It is concluded that at most places SBC base shear is higher for both ELFP and MRSA. However, the results cannot be generalized and considered always right. The same is factual for overturning moments. Consequently, we cannot report that SBC is more conservative than UBC for all scenarios.
文摘The statistical characteristics of strong ground motion specified by response spectrum and power spectral density function are studied using 190 strong-motion records of the Haicheng and Tangshan earthquakes in China and 138 earthquakes in the western United States.The response spectrum is normalized by the peak ground acceleration(i.e.,represented as spectral magnification factor),and the power spectral density function is described by the Kanai-Tajimi spectrum.The statistics and dependence of parameters are evaluated,and correlations between the spectral magnification factor or Kanai-Tajimi spectral parameters and the site condition,epicentral distance,or local magnitude are investigated.The statistical characteristics of spectra China and the U.S.A.are compared.Based on the results obtained the values of the statistics on spectral parameters for earthquake engineering applications in China are suggested.
基金the University of Punjab for providing support for this research
文摘The building code of any country is considered to be a basic technical guidance document for the seismic design of structures.However,building codes are typically developed for the whole country,without considering site specific models that incorporate detailed site-specific data.Therefore,the adequacy of the design spectrum for building codes may sometimes be questionable.To study the sufficiency of the building codes of Pakistan(BCP-SP-2007),a deterministic seismic hazard analysis(DSHA)based spectrum was developed for a site in the Muzaffargarh area,Pakistan,using an updated earthquake catalogue,seismic source model,and a next generation attenuation model(NGA-WEST-2).Further,an International Building Code(IBC-2000)spectrum was developed for the study area to compare the results.The DSHA-based response spectrum resulted in a peak ground acceleration(PGA)value of 0.21 g for the Chaudwan fault.The evaluation of BCP-SP-2007 and IBC-2000 spectra provided a critical assessment for analyzing the associated margins.A comparison with the DSHA-based response spectrum showed that the BCP-SP-2007 design spectrum mostly overlapped with the DSHA spectrum unlike IBC-2000.However,special attention is needed for designing buildings in the study area when considering earthquake periods longer than 1 s,and the BCP-SP-2007 spectrum can be enhanced when considering a period range of 0.12-0.64 s.Finally,BCP-SP-2007 is based on a probabilistic approach and its comparison with deterministic results showed the significance of both methods in terms of design.
基金funded by the Basic Scientific Research and Business Item of Central Public-interest Scientific Institution,China(ZDJ2012-12)
文摘Two kinds of determining methods for scenario earthquakes are presented in this paper,namely the weighted average method and maximum probability method. This paper briefly introduces the two methods,then taking a high-rise building in the Yantai area as a case study,we use the weighted average method and maximum probability method to realize seismic hazard analysis, determine earthquake magnitude, the epicenter and specific space position,and then give two response spectrums of the two methods. By comparing the differences of response spectrums between the two methods,we find that the weighted average method is more suitable for long period structures,while considering long period safety. The maximum probability method is more suitable for short period structures. It is reasonable to choose a corresponding different method when the structures have different natural vibration periods.
文摘Dam structure built to store water has failed with resulting loss of life, social, economic and environmental losses due to seismic vibrations. These vibrations are dynamic in nature. These vibrations must be reduced with proper application of engineering principles and for estimating the behavior of concrete gravity dam dynamic analysis plays an extraordinary role. This paper presents the dynamic time history analysis and response spectrum method of a concrete gravity dam by using STAAD-PRO. Here Finite Element Approach is used to analyze the dam. A concrete gravity dam model is prepared in STAAD-PRO to perform the time history analysis and response spectrum analysis and a comparison is done between both these methods. Concrete gravity dam is a large structure which retains a very large amount of water on its upstream side and it is very crucial for a dam to survive against vibrations of earthquake. So it is a matter of study to check the behaviour of a dam during and after the application of the loading.
基金supported by Foundation of Henan Educational Committee(20A560004,J.Z.)Foundation of Henan Science and Technology Project(182102311086,Y.W.)Foundation for University Key Teacher(YCJQNGGJS201901,J.Z.,YCJXSJSDTR201801,Y.W.,Henan University of Urban Construction).
文摘Viscoelastic damper is an effective passive damping device,which can reduce the seismic response of the structure by increasing the damping and dissipating the vibration energy of structures.It has a wide application prospect in actual structural vibration control because of simple device and economical material.In view of the poor seismic behaviors of assembled frame structure connections,various energy dissipation devices are proposed to improve the seismic performance.The finite element numerical analysis method is adopted to analyze relevant energy dissipation structural parameters.The response spectrum of a 7-story assembled frame structure combined the ordinary steel support,ordinary viscoelastic damper,and viscoelastic damper with displacement amplification device is analyzed.The analysis results show that the mechanical behavior of assembled frame structure with ordinary steel supports are not significantly different from those without energy dissipation devices.The assembled frame structure with viscoelastic damper has better seismic performance and energy dissipation,especially for the viscoelastic damper with displacement amplification devices.The maximum value of inter-story displacement angle decreases by 32.24%;the maximum floor displacement decreases by 31.91%,and the base shear decreases by 13.62%compared with the assembled frame structures without energy dissipation devices.The results show that the seismic fortification ability of the structure is significantly improved,and the overall structure is more uniformly stressed.The damping structure with viscoelastic damper mainly reduces the dynamic response of the structure by increasing the damping coefficient,rather than by changing the natural vibration period of the structure.This paper provides an effective theoretical basis and reference for improving the energy dissipation system and the seismic performance of assembled frame structures.
基金Projects(41272304,51374244,41372278,51304241)supported by the National Natural Science Foundation of ChinaProject(2010CB732004)supported by the National Basic Research Program of China
文摘The seismic records of target response spectrum used in the time-history analysis should be allowed to meet the norms. However, the previous fitting methods of target spectrum are mostly for the situations that the target spectrum is a smooth curve. In many cases, it needs to match unsmooth target spectrum for single determined response spectrum. An adjustment of time history via wavelet packet transform was presented, which is able to fit unsmooth target spectrum. It was found that there is a certain bias between the band center frequency of the component of seismic record after wavelet packet decomposition and the peak frequency of response spectra of wavelet packet components. For this reason, five strategies were presented to select iteration points, and the effects of the five strategies were compared with two calculation examples. It was turned out that the peak frequency of the response spectrum of wavelet packet component can lead to good fitting effect when it is selected as the iteration point. In the iteration process, it shows great promise in fitting non-smooth target spectrum and has a trend of converge.
基金National Natural Science Foundation of China (50278002)Dalian Nationalities University Ph D Foundation (20066104)
文摘It was shown from the study on the recently near-fault earthquake ground motions that the near-fault effects were seldom considered in the existing Chinese seismic code. Referring to the UBC97 design concept for near-fault factors, based on the collected world-widely free-site records of near-fault earthquakes ground motions classified by earthquake magnitude and site condition, the attenuation relationship expressions of the acceleration spectrum demand at the key points within the long period and moderate period were established in term of the earthquake magnitude and the site condition. Furthermore, the near-fault factors' expressions about the earthquake magnitude and the fault distance were deduced for the area lack of near-fault strong earthquake records. Based on the current Chinese Building Seismic Design Code, the near-fault effect factors and the modified design spectral curves, which were valuable for the seismic design, were proposed to analyze the seismic response of structures.
基金supported by the National Natural Science Foundation of China(Nos.41374130 and 41604154)Opening Foundation of Sichuan Provincial Key Lab of Applied Nuclear Techniques in Geosciences(No.gnzds2014003)the Open Fund of Robot Technology Used for Special Environment Key Laboratory of Sichuan Province(13zxtk04)
文摘Effect factors of the absorption of the source,air,entrance window,and dead layer of a detector must be considered in the measurement of monoenergetic alpha particles,along with statistical noise and other factors that collectively cause the alpha spectrum to exhibit a well-known low-energy tail.Therefore,the estabUshment of an alpha spectrum detector response function from the perspective of a signaling system must consider the various factors mentioned above.The detector response function is the convolution of an alphaparticle pulse function,two exponential functions,and a Gaussian function,followed by calculation of the parameters of the detector response function using the weighted leastsquares fitting method as proposed in this paper.In our experiment,^(239)Pu alpha spectra were measured by a highresolution,passivated implanted planar silicon(PIPS)detector at 10 levels of vacuum and 10 source-detector distances.The spectrum-fitting results were excellent as evaluated by reduced Chi-square(x^2) and correlation coefficients.Finally,the variation of parameters with vacuum level and source-detector distance was studied.Results demonstrate that σ,τ_1,and τ_2 exhibit no obvious trend of variation with vacuum in the range 2000-20,000 mTorr,and at a confidence level of 95%,the values of τ_1 and τ_2 decline in a similar fashion with source-detector distance by the power exponential function,while the value of a declines linearly.