The nonstationary probability densities of system response of a single-degree- of-freedom system with lightly nonlinear damping and strongly nonlinear stiffness subject to modulated white noise excitation are studied....The nonstationary probability densities of system response of a single-degree- of-freedom system with lightly nonlinear damping and strongly nonlinear stiffness subject to modulated white noise excitation are studied. Using the stochastic averaging method based on the generalized harmonic functions, the averaged Fokl^er-Planck-Kolmogorov equation governing the nonstationary probability density of the amplitude is derived. The solution of the equation is approximated by the series expansion in terms of a set of properly selected basis functions with time-dependent coefficients. According to the Galerkin method, the time-dependent coefficients can be solved from a set of first-order linear differential equations. Then, the semi-analytical formulae of the nonstationary probability density of the amplitude response as well as the nonstationary probability density of the state response and the statistic moments of the amplitude response can be obtained. A van der Pol-Duffing oscillator subject to modulated white noise is given as an example to illustrate the proposed procedures. The effects of the system parameters, such as the linear damping coefficient and the nonlinear stiffness coefficient, on the system response are discussed.展开更多
A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relation...A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relationship, where the random excitation can be decomposed as a nonstationary stochastic process, Mittag-Leffler internal noise, and external stationary noise excitation. Then, based on the Laplace transform approach, we derived the mean value function, variance function and covariance function through the Green's function technique and the residue calculus method, and obtained theoretical results. In some special case of fractional order derivative α , the Monte Carlo approach and error function results were applied to check the effectiveness of the analytical results, and good agreement was found. Finally in a general-purpose case, we also confirmed the analytical conclusion via the direct Monte Carlo simulation.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11025211)the Zhejiang Provincial Natural Science Foundation of China(No.Z6090125)the Special Fund for National Excellent Ph.D.Dissertation and Research Grant Council of Hong Kong City(No.U115807)
文摘The nonstationary probability densities of system response of a single-degree- of-freedom system with lightly nonlinear damping and strongly nonlinear stiffness subject to modulated white noise excitation are studied. Using the stochastic averaging method based on the generalized harmonic functions, the averaged Fokl^er-Planck-Kolmogorov equation governing the nonstationary probability density of the amplitude is derived. The solution of the equation is approximated by the series expansion in terms of a set of properly selected basis functions with time-dependent coefficients. According to the Galerkin method, the time-dependent coefficients can be solved from a set of first-order linear differential equations. Then, the semi-analytical formulae of the nonstationary probability density of the amplitude response as well as the nonstationary probability density of the state response and the statistic moments of the amplitude response can be obtained. A van der Pol-Duffing oscillator subject to modulated white noise is given as an example to illustrate the proposed procedures. The effects of the system parameters, such as the linear damping coefficient and the nonlinear stiffness coefficient, on the system response are discussed.
基金supported by the National Natural Science Foundation of China (11172233, 10932009 and 10972181)Program for New Century Excellent Talents in University+1 种基金the Shaanxi Project for Young New Star in Science & TechnologyNPU Foundation for Fundamental Research and New Faculties and Research Area Project
文摘A convenient and universal residue calculus method is proposed to study the stochastic response behaviors of an axially moving viscoelastic beam with random noise excitations and fractional order constitutive relationship, where the random excitation can be decomposed as a nonstationary stochastic process, Mittag-Leffler internal noise, and external stationary noise excitation. Then, based on the Laplace transform approach, we derived the mean value function, variance function and covariance function through the Green's function technique and the residue calculus method, and obtained theoretical results. In some special case of fractional order derivative α , the Monte Carlo approach and error function results were applied to check the effectiveness of the analytical results, and good agreement was found. Finally in a general-purpose case, we also confirmed the analytical conclusion via the direct Monte Carlo simulation.