In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we ass...In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite(NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives.展开更多
基金supported by grants from National Natural Science Foundation of China(Nos.81701014,81801310,31700076)the Basic Research of Natural Science Project funded by the Department of Science and Technology of Shaanxi Province(No.2017JM8038)the Science and Technology Project funded by the Science and Technology Bureau of Weiyang District,Xi’an city(No.201846)。
文摘In this study, we employed a nonthermal atmospheric pressure plasma(NTAPP) jet to evaluate the effect of plasma treatment on the durability of resin–dentin bonding under a thermocycling challenge. Furthermore, we assessed the degradation resistance of plasma-treated collagen under a sodium hypochlorite(NaClO) challenge. We assessed the beneficial effect of NTAPP treatment on the acid-etched dentin–bonding interface by testing the micro-tensile bond strength and examining the morphology. We found that the immediate bonding strength of the dentin significantly increased after NTAPP treatment. Compared with the control group, NTAPP resulted in a more prominent effect on the bonding durability of the dentin–adhesive interface after treatment for 5 or 10 s. Simultaneously, the mechanical strength of dentin collagen under the NaClO challenge was improved. Our results indicate that, in optimal conditions, NTAPP could be a promising method to protect dentin collagen and to improve the bonding durability between dentin and etch-and-rinse adhesives.