A passive approach is developed to quench excess vibration along a harmonically driven,arbitrarily supported,nonuniform Euler-Bernoulli beam with constant thickness(height)and varying width.Vibration suppression is ac...A passive approach is developed to quench excess vibration along a harmonically driven,arbitrarily supported,nonuniform Euler-Bernoulli beam with constant thickness(height)and varying width.Vibration suppression is achieved by attaching properly tuned vibration absorbers to enforce nodes,or points of zero vibration,along the beam.An efficient hybrid method is proposed whereby the finite element method is used to model the nonuniform beams,and a formulation based on the assumed modes method is used to determine the required attachment force supplied by each absorber to induce the desired nodes.Knowing the attachment forces needed to induce nodes,design plots are generated for the absorber parameters as a function of the tolerable vibration amplitude for each absorber mass.When the node locations are judiciously chosen,it is possible to dramatically suppress the vibration along a selected region of the beam.As such,sensitive instruments can be placed in this region and will remain nearly stationary.Numerical studies illustrate the application to several systems with various types of nonuniformity,boundary conditions,and attachment and node locations;these examples validate the proposed method to passively control excess vibration by inducing nodes on nonuniform beams subjected to harmonic excitations.展开更多
In this article, we study the stabilization problem of a nonuniform Euler-Bernoulli beam with locally distributed feedbacks. Firstly, using the semi-group theory, we establish the well-posedness of the associated clos...In this article, we study the stabilization problem of a nonuniform Euler-Bernoulli beam with locally distributed feedbacks. Firstly, using the semi-group theory, we establish the well-posedness of the associated closed loop system. Then by proving the uniqueness of the solution of a related ordinary differential equations, we derive the asymptotic stability of the closed loop system. Finally, by means of the piecewise frequency domain multiplier method, we prove that the corresponding closed loop system can be exponentially stabilized by only one of the two distributed feedback controls proposed in this paper.展开更多
When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key...When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.展开更多
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of th...Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.展开更多
Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-le...Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.展开更多
In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and tra...In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and transverse displacements are taken into account as degrees of freedom.Four different boundary conditions are considered including pinned support-roller support,pinned support-pinned support,clamped-clamped and clamped-free.Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions.展开更多
Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained result...Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.展开更多
The paper investigates the response of non-initially stressed Euler-Bernoulli beam to uniform partially distributed moving loads. The governing partial differential equations were analyzed for both moving force and mo...The paper investigates the response of non-initially stressed Euler-Bernoulli beam to uniform partially distributed moving loads. The governing partial differential equations were analyzed for both moving force and moving mass problem in order to determine the behaviour of the system under consideration. The analytical method in terms of series solution and numerical method were used for the governing equation. The effect of various beam observed that the response amplitude due to the moving force is greater than that due to moving mass. It was also found that the response amplitude of the moving force problem with non-initial stress increase as mass of the mass of the load M increases.展开更多
We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data,comprising two-end fixed,cantilevered,clamped-hinged,and simply su...We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data,comprising two-end fixed,cantilevered,clamped-hinged,and simply supported conditions in this study.Even though some researchers used several schemes to overcome these forward problems of Euler-Bernoulli beams;however,an effective numerical algorithm to solve these inverse problems is still not available.We cope with the homogeneous boundary conditions,initial data,and final time datum for each type of nonlinear beam by employing a variety of boundary shape functions.The unknown nonlinear large external force can be recuperated via back-substitution of the solution into the nonlinear Euler-Bernoulli beam equation when we acquire the solution by utilizing the boundary shape function scheme and deal with a smallscale linear system to gratify an additional right-side boundary data.For the robustness and accuracy,we reveal that the current schemes are substantiated by comparing the recuperated numerical results of four instances to the exact forces,even though a large level of noise up to 50%is burdened with the overspecified conditions.The current method can be employed in the online real-time computation of unknown force functions in space-time for varied boundary supports of the vibrating nonlinear beam.展开更多
Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough hi...Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough high. In this paper, we will illustrate the high-precision numerical method to solve Euler-Bernoulli beam equation. Three numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by our method indicate new algorithm has the following advantages: small computational work, fast convergence speed and high precision.展开更多
The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multipl...The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.展开更多
In this article, we study the locally distributed feedback stabilization problem of a nonuniform Euler-Bernoulli beam. Firstly, using the semi-group theory, we establish the wellposedness of the associated closed loop...In this article, we study the locally distributed feedback stabilization problem of a nonuniform Euler-Bernoulli beam. Firstly, using the semi-group theory, we establish the wellposedness of the associated closed loop system. Then by proving the uniqueness of the solution to a related ordinary differential equation, we derive the asymptotic stability of the closed loop system. Finally, by means of the piecewise multiplier method, we prove that, by either one distributed force feedback or a distributed moment feedback control, the closed loop system can be exponentially stabilized.展开更多
Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the...Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.展开更多
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatia...Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.展开更多
The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory...The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory is presented for the material properties of the FGM beams changing continuously in the thickness direction. The de- flection, the rotational angle, the bending moment, and the shear force of FGM Levinson beams (FGMLBs) are given analytically in terms of the deflection of the reference ho- mogenous Euler-Bernoulli beams (HEBBs) with the same loading, geometry, and end supports. Consequently, the solution of the bending of non-homogenous Levinson beams can be simplified to the calculation of transition coefficients, which can be easily deter- mined by variation of the gradient of material properties and the geometry of beams. This is because the classical beam theory solutions of homogenous beams can be eas- ily determined or are available in the textbook of material strength under a variety of boundary conditions. As examples, for different end constraints, particular solutions are given for the FGMLBs under specified loadings to illustrate validity of this approach. These analytical solutions can be used as benchmarks to check numerical results in the investigation of static bending of FGM beams based on higher-order shear deformation theories.展开更多
In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial ...In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.展开更多
In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the s...In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the structure to be three dimensional,and thus we must consider all types of vibrations simulaneously, including longitudinaland torsional vibrations. The general structure considered will consist of any number ofbeams joined end to end to form a chain. Many, different kinds of dampers areallowed, even within the same structure. We also will allow different materials withinthe structure as well as different beam widths. We then will show. that asymptotic estimates can be used to find the eigenfrequencies approximately.展开更多
Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in...Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis,three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system,dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane,the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.展开更多
文摘A passive approach is developed to quench excess vibration along a harmonically driven,arbitrarily supported,nonuniform Euler-Bernoulli beam with constant thickness(height)and varying width.Vibration suppression is achieved by attaching properly tuned vibration absorbers to enforce nodes,or points of zero vibration,along the beam.An efficient hybrid method is proposed whereby the finite element method is used to model the nonuniform beams,and a formulation based on the assumed modes method is used to determine the required attachment force supplied by each absorber to induce the desired nodes.Knowing the attachment forces needed to induce nodes,design plots are generated for the absorber parameters as a function of the tolerable vibration amplitude for each absorber mass.When the node locations are judiciously chosen,it is possible to dramatically suppress the vibration along a selected region of the beam.As such,sensitive instruments can be placed in this region and will remain nearly stationary.Numerical studies illustrate the application to several systems with various types of nonuniformity,boundary conditions,and attachment and node locations;these examples validate the proposed method to passively control excess vibration by inducing nodes on nonuniform beams subjected to harmonic excitations.
基金Supported by Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (No. 201102)Beijing Natural Science Foundation (No. 1052007)
文摘In this article, we study the stabilization problem of a nonuniform Euler-Bernoulli beam with locally distributed feedbacks. Firstly, using the semi-group theory, we establish the well-posedness of the associated closed loop system. Then by proving the uniqueness of the solution of a related ordinary differential equations, we derive the asymptotic stability of the closed loop system. Finally, by means of the piecewise frequency domain multiplier method, we prove that the corresponding closed loop system can be exponentially stabilized by only one of the two distributed feedback controls proposed in this paper.
基金supported by the National Natural Science Foundation of China(No.52074042)National Key R&D Program of China(No.2018YFC1504802).
文摘When the mining goaf is close to the cliff,rock slope subsidence induced by underground mining is significantly affected by its boundary conditions.In this study,an analytical method is proposed by considering the key strata as a semi-infinite Euler-Bernoulli beam rested on a Winkler foundation with a local subsidence area.The analytical solutions of deflection are derived by analyzing the boundary and continuity conditions of the cliff.Then,the analytical solutions are verified by the results from experimental tests,FEM and InSAR,respectively.After that,the influence of changing parameters on deflections is studied with sensitivity analysis.The results show that the distance between goaf and cliff significantly affects the deflection of semi-infinite beam.The response of semi-infinite beam is obviously determined by the length of goaf and the bending stiffness of beam.The comparisons between semi-infinite beam and infinite beam illustrate the ascendancy of the improved model in such problems.
文摘Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects.Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases,such as bending analysis of cantilevers,and recourse must be made to the integral version.In this article,a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain-and stress-driven integral nonlocal models.This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation.First,the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy.Also,in each case,the governing equation is obtained in both strong and weak forms.To solve numerically the derived equations,matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule.It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes.Also,it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
基金Projects(51605138,U1508210)supported by the National Natural Science Foundation of ChinaProject(BK20160286)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(2015B30214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Present investigation is concerned with the free vibration property of a beam with periodically variable cross-sections.For the special geometry characteristic,the beam was modelled as the combination of long equal-length uniform Euler-Bernoulli beam segments and short equal-length uniform Timoshenko beam segments alternately.By using continuity conditions,the hybrid beam unit(ETE-B) consisting of Euler-Bernoulli beam,Timoshenko beam and Euler-Bernoulli beam in sequence was developed.Classical boundary conditions of pinned-pinned,clamped-clamped and clamped-free were considered to obtain the natural frequencies.Numerical examples of the equal-length composite beam with 1,2 and 3 ETE-B units were presented and compared with the equal-length and equal-cross-section Euler-Bernoulli beam,respectively.The work demonstrates that natural frequencies of the composite beam are larger than those of the Euler-Bernoulli beam,which in practice,is the interpretation that the inner-welded plate can strengthen a hollow beam.In this work,comparisons with the finite element calculation were presented to validate the ETE-B model.
文摘In this study,a new state-based peridynamic formulation is developed for functionally graded Euler-Bernoulli beams.The equation of motion is developed by using Lagrange’s equation and Taylor series.Both axial and transverse displacements are taken into account as degrees of freedom.Four different boundary conditions are considered including pinned support-roller support,pinned support-pinned support,clamped-clamped and clamped-free.Peridynamic results are compared against finite element analysis results for transverse and axial deformations and a very good agreement is observed for all different types of boundary conditions.
文摘Chaotic vibrations of flexible non-linear Euler-Bernoulli beams subjected to harmonic load and with various boundary conditions(symmetric and non-symmetric)are studied in this work.Reliability of the obtained results is verified by the finite difference method(FDM)and the finite element method(FEM)with the Bubnov-Galerkin approximation for various boundary conditions and various dynamic regimes(regular and non-regular).The influence of boundary conditions on the Euler-Bernoulli beams dynamics is studied mainly,dynamic behavior vs.control parameters { ωp,q0 } is reported,and scenarios of the system transition into chaos are illustrated.
文摘The paper investigates the response of non-initially stressed Euler-Bernoulli beam to uniform partially distributed moving loads. The governing partial differential equations were analyzed for both moving force and moving mass problem in order to determine the behaviour of the system under consideration. The analytical method in terms of series solution and numerical method were used for the governing equation. The effect of various beam observed that the response amplitude due to the moving force is greater than that due to moving mass. It was also found that the response amplitude of the moving force problem with non-initial stress increase as mass of the mass of the load M increases.
基金This work was financially supported by the National United University[grant numbers 111-NUUPRJ-04].
文摘We retrieve unknown nonlinear large space-time dependent forces burdened with the vibrating nonlinear Euler-Bernoulli beams under varied boundary data,comprising two-end fixed,cantilevered,clamped-hinged,and simply supported conditions in this study.Even though some researchers used several schemes to overcome these forward problems of Euler-Bernoulli beams;however,an effective numerical algorithm to solve these inverse problems is still not available.We cope with the homogeneous boundary conditions,initial data,and final time datum for each type of nonlinear beam by employing a variety of boundary shape functions.The unknown nonlinear large external force can be recuperated via back-substitution of the solution into the nonlinear Euler-Bernoulli beam equation when we acquire the solution by utilizing the boundary shape function scheme and deal with a smallscale linear system to gratify an additional right-side boundary data.For the robustness and accuracy,we reveal that the current schemes are substantiated by comparing the recuperated numerical results of four instances to the exact forces,even though a large level of noise up to 50%is burdened with the overspecified conditions.The current method can be employed in the online real-time computation of unknown force functions in space-time for varied boundary supports of the vibrating nonlinear beam.
文摘Euler-Bernoulli beam equation is very important that can be applied in the field of mechanics, science and technology. Some authors have put forward many different numerical methods, but the precision is not enough high. In this paper, we will illustrate the high-precision numerical method to solve Euler-Bernoulli beam equation. Three numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by our method indicate new algorithm has the following advantages: small computational work, fast convergence speed and high precision.
基金Supported partially by the NSFC and the Science Foundation of China State Education Commission.
文摘The stabilization of the Timoshenko equation of a nonuniform beam with locally distributed feedbacks is considered.It is proved that the system is exponentially stabilizable.The frequency domain method and the multiplier technique are applied.
文摘In this article, we study the locally distributed feedback stabilization problem of a nonuniform Euler-Bernoulli beam. Firstly, using the semi-group theory, we establish the wellposedness of the associated closed loop system. Then by proving the uniqueness of the solution to a related ordinary differential equation, we derive the asymptotic stability of the closed loop system. Finally, by means of the piecewise multiplier method, we prove that, by either one distributed force feedback or a distributed moment feedback control, the closed loop system can be exponentially stabilized.
基金Project supported by the China Postdoctoral Science Foundation(No.2018M630167)
文摘Large deformation of a cantilever axially functionally graded (AFG) beam subject to a tip load is analytically studied using the homotopy analysis method (HAM). It is assumed that its Young’s modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter, the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.
文摘Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange's equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mass weight and velocity of the moving mass are presented for multispan viscoelastic beams as well as various values of relaxation rate and beam span number. A reasonable good agreement is achieved between the results of the proposed solution and those obtained by other researchers. The results indicate that, although the load inertia effects in beams with higher span number would be intensified for higher levels of moving mass velocity, the maximum values of design parameters would increase either. Moreover, the possibility of mass separation is shown to be more critical as the span number of the beam increases. This fact also violates the linear relation between the mass weight of the moving load and the associated design parameters, especially for high moving mass velocities. However, as the relaxation rate of the beam material increases, the load inertia effects as well as the possibility of moving mass separation reduces.
基金supported by the National Natural Science Foundation of China(No.11272278)
文摘The exact relationship between the bending solutions of functionally graded material (FGM) beams based on the Levinson beam theory and those of the correspond- ing homogenous beams based on the classical beam theory is presented for the material properties of the FGM beams changing continuously in the thickness direction. The de- flection, the rotational angle, the bending moment, and the shear force of FGM Levinson beams (FGMLBs) are given analytically in terms of the deflection of the reference ho- mogenous Euler-Bernoulli beams (HEBBs) with the same loading, geometry, and end supports. Consequently, the solution of the bending of non-homogenous Levinson beams can be simplified to the calculation of transition coefficients, which can be easily deter- mined by variation of the gradient of material properties and the geometry of beams. This is because the classical beam theory solutions of homogenous beams can be eas- ily determined or are available in the textbook of material strength under a variety of boundary conditions. As examples, for different end constraints, particular solutions are given for the FGMLBs under specified loadings to illustrate validity of this approach. These analytical solutions can be used as benchmarks to check numerical results in the investigation of static bending of FGM beams based on higher-order shear deformation theories.
基金supported by the National Natural Science Foundation of China(11272009)National Basic Research Program of China(2010CB731503)U.S. National Science Foundation(0900498)
文摘In a semi-discretized Euler-Bernoulli beam equa- tion, the non-nearest neighboring interaction and large span of temporal scales for wave propagations pose challenges to the effectiveness and stability for artificial boundary treat- ments. With the discrete equation regarded as an atomic lattice with a three-atom potential, two accurate artificial boundary conditions are first derived here. Reflection co- efficient and numerical tests illustrate the capability of the proposed methods. In particular, the time history treatment gives an exact boundary condition, yet with sensitivity to nu- merical implementations. The ALEX (almost EXact) bound- ary condition is numerically more effective.
文摘In this paper, we will compute the transfer matrices to find the eigenfrequenciesfor the vibrations of the general non-collinear Euler-Bernoulli or Timoshenko beamstructure with dissipative joints. We will allow the structure to be three dimensional,and thus we must consider all types of vibrations simulaneously, including longitudinaland torsional vibrations. The general structure considered will consist of any number ofbeams joined end to end to form a chain. Many, different kinds of dampers areallowed, even within the same structure. We also will allow different materials withinthe structure as well as different beam widths. We then will show. that asymptotic estimates can be used to find the eigenfrequencies approximately.
文摘Dynamic equations of motional flexible beam elements were derived considering second-order effect. Non-linear finite element method and three-node Euler-Bernoulli beam elements were used. Because accuracy is higher in non-linear structural analysis,three-node beam elements are used to deduce shape functions and stiffness matrices in dynamic equations of flexible elements. Static condensation method was used to obtain the finial dynamic equations of three-node beam elements. According to geometrical relations of nodal displacements in concomitant and global coordinate system,dynamic equations of elements can be transformed to global coordinate system by concomitant coordinate method in order to build the global dynamic equations. Analyzed amplitude condition of flexible arm support of a port crane,the results show that second-order effect should be considered in kinetic-elastic analysis for heavy load machinery of big flexibility.