Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r...Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.展开更多
The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fr...The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.展开更多
The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,un...The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,under a relatively high normal stress,normal stress and the coefficient of structural roughness are the most important factors affecting the mechanical interface characteristics. The relationship between shear stress and shear displacement of the soil-structure interface is a hyperbolic curve with high regression accuracy. Based on our experimental results,a nonlinear elastic con-stitutive model of the soil-structure interface under relatively high normal stress is established with a definite physical meaning for its parameters. The model can predict the strain hardening behavior of the soil during the shearing process. The results show an encouraging agreement with experimental data from direct shear tests.展开更多
The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandi...The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandis model is used to calculate the fracture closure due to normal stress,and the fluid flow is simulated by solving the Reynold equation.The Lagrangian particle tracking method is applied to modeling the advective transport in the fracture.The results show that the normal stress significantly affects fluid flow and solute transport in rock fractures.It causes fracture closure and creates asperity contact areas,which significantly reduces the effective hydraulic aperture and enhances flow channeling.Consequently,the reduced aperture and enhanced channeling affect travel time distributions.In particular,the enhanced channeling results in enhanced first arriving and tailing behaviors for solute transport.The fracture normal stiffness correlates linearly with the 5th and 95th percentiles of the normalized travel time.The finding from this study may help to better understand the stress-dependent solute transport processes in natural rock fractures.展开更多
Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stre...Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stress conditions,a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes.The effects of the initial stresses(i.e.,the normal stress and shear stress before unloading)on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations.The shear strength of a rock under constant stress or under unloading normal stress conforms to the Mohr Coulomb criterion.As the initial normal stress increases,the cohesion decreases linearly and the tangent of the internal friction angle increases linearly.Compared with the results of the tests under constant normal stress,the cohesions of the rock samples under unloading normal stress are smaller and their internal friction angles are larger.A strength envelope surface can be used to describe the relationship between the initial stresses and the failure normal stress.Shear dilatancy can decrease the total energy of the direct shear test under constant normal stress or unloading normal stress,particularly when the stress levels(the initial stresses in the test under unloading normal stress or the normal stress in the test under constant normal stress)are high.The ratio of the dissipated energy to the total energy at the moment failure occurs decreases exponentially with increasing initial stresses.The direct shear test under constant normal stress can be considered to be a special case of a direct shear test under unloading normal stress with an unloading amount of zero.展开更多
The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estim...The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estimating parameters under a normal stress.展开更多
Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plottin...Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.展开更多
Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for d...Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.展开更多
Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very import...Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very important to handle emotions and stress coping strategies to obtain positive outcomes. Objective: To identify the most frequent emotions, as well as the adaptation strategies to the new normality faced by the students of nursing. Methods: Qualitative and phenomenological research, with the participation of 20 students from both genders in the middle term of nursing career at Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, from August to November 2021. Information was collected from a focal group for ten sessions;analysis was according to De Souza Minayo, and there was a signed informed consent letter from participants. Results: Four categories emerged with sub-categories. Category I Maximized emotions. Sub-categories: 1) Frustration, anger, disappointment;2) Personal disappointment, hopelessness, uncertainty;3) Depression. Category II Support elements close to the new normality. Sub-categories: 1) Family communication;2) Education for mental and physical health. Category III Stressing situations that exceeded the student. Sub-category: Disease in lovely ones. Category IV Stress coping strategies. Sub-categories: 1) Friends and relatives that help to get better;2) Family values. Informers pointed out to have maximized emotion, and having no self-control on its negative outcomes occurred;in addition, the situation was not favorable at home with several losses of loved ones, as well as a poor economy that threatened students to give up studies. Conclusion: Emotions facing this new normality are very important and should be attended to, their proper handling will result in a new learning of socio-emotional abilities, stress coping strategies development, better adaptation and informed decisions taken.展开更多
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC...Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.52174092 and 52104125)the Fundamental Research Funds for the Central Universities,China(Grant No.2022YCPY0202)is gratefully acknowledged.
文摘Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.
基金supported by Fundamental Research Funds for the Central Universities(22dfx06)Natural Science Foundation of Guangdong Province-Joint Program for Ofshore Wind Power(2022A1515240009).
文摘The frictional rupture mechanisms of rock discontinuities considering the dynamic load disturbance still remain unclear.This paper investigates the transitional behaviors of slip events happened on a planar granite fracture under cyclic normal stress with diferent oscillation amplitudes.The experimental results show that the activations of fast slips always correlate with unloading of normal stress.Besides,the intensive normal stress oscillation can weaken the shear strength which is recoverable when the normal stress return to constant.The rupture patterns are quantifed by stress drop,slip length and slip velocity.With the efect of small oscillation amplitudes,the slip events show chaotic shapes,compared to the regular and predictable style under constant normal stress.When the amplitude is large enough,the big and small slip events emerge alternately,showing a compound slip style.Large amplitude of the cyclic normal stress also widens the interval diferences of the slip events.This work provides experimental supports for a convincible link between the dynamic stress disturbance and the slip behavior of rock fractures.
基金Projects 50534040 supported by the National Natural Science Foundation of China2002CB412704 by the Major State Basic Research and Development Program of China
文摘The shear characteristics of soil-structure interfaces with different roughness are studied systematically by us-ing the DRS-1 high normal stress and residual shear apparatus. The experimental results indicate that,under a relatively high normal stress,normal stress and the coefficient of structural roughness are the most important factors affecting the mechanical interface characteristics. The relationship between shear stress and shear displacement of the soil-structure interface is a hyperbolic curve with high regression accuracy. Based on our experimental results,a nonlinear elastic con-stitutive model of the soil-structure interface under relatively high normal stress is established with a definite physical meaning for its parameters. The model can predict the strain hardening behavior of the soil during the shearing process. The results show an encouraging agreement with experimental data from direct shear tests.
基金funding provided by the Swedish Nuclear Fuel and Waste Management Co.(SKB)。
文摘The impact of normal stress-induced closure on fluid flow and solute transport in a single rock fracture is demonstrated in this study.The fracture is created from a measured surface of a granite rock sample.The Bandis model is used to calculate the fracture closure due to normal stress,and the fluid flow is simulated by solving the Reynold equation.The Lagrangian particle tracking method is applied to modeling the advective transport in the fracture.The results show that the normal stress significantly affects fluid flow and solute transport in rock fractures.It causes fracture closure and creates asperity contact areas,which significantly reduces the effective hydraulic aperture and enhances flow channeling.Consequently,the reduced aperture and enhanced channeling affect travel time distributions.In particular,the enhanced channeling results in enhanced first arriving and tailing behaviors for solute transport.The fracture normal stiffness correlates linearly with the 5th and 95th percentiles of the normalized travel time.The finding from this study may help to better understand the stress-dependent solute transport processes in natural rock fractures.
基金This research was funded by the Fundamental Research Funds for the Central Universities,CHD(Grant Nos.300102210307 and 300102210308)the National Natural Science Foundation of China(Grant Nos.41831286 and 41972297)the Natural Science Foundation of Shaanxi Province(Grant No.2020JQ-369).
文摘Excavation and earth surface processes(e.g.,river incision)always induce the unloading of stress,which can cause the failure of rocks.To study the shear mechanical behavior of a rock sample under unloading normal stress conditions,a new stress path for direct shear tests was proposed to model the unloading of stress caused by excavation and other processes.The effects of the initial stresses(i.e.,the normal stress and shear stress before unloading)on the shear behavior and energy conversion were investigated using laboratory tests and numerical simulations.The shear strength of a rock under constant stress or under unloading normal stress conforms to the Mohr Coulomb criterion.As the initial normal stress increases,the cohesion decreases linearly and the tangent of the internal friction angle increases linearly.Compared with the results of the tests under constant normal stress,the cohesions of the rock samples under unloading normal stress are smaller and their internal friction angles are larger.A strength envelope surface can be used to describe the relationship between the initial stresses and the failure normal stress.Shear dilatancy can decrease the total energy of the direct shear test under constant normal stress or unloading normal stress,particularly when the stress levels(the initial stresses in the test under unloading normal stress or the normal stress in the test under constant normal stress)are high.The ratio of the dissipated energy to the total energy at the moment failure occurs decreases exponentially with increasing initial stresses.The direct shear test under constant normal stress can be considered to be a special case of a direct shear test under unloading normal stress with an unloading amount of zero.
文摘The TFR(Tampered Failure Rate) model was proposed by Bhattacharyya and Soejoeti(1989) for step-stress accelerated life tests, On step-stress completely accelerated test occasions, the paper gives a method of estimating parameters under a normal stress.
文摘Following a sticky particle model and Its computer simulation scheme proposed In the previous papers, the viscosity and normal stress difference are cakulated when the aggregating colloid is being sheared. The plotting of the viscosity vs shear strain shows a sigmoidal shape, which Is also observed in experimental results. The normal stress difference is plotted vs shear strain, which has not been reported in the literatures till now.
基金Project(10572141) supported by the National Natural Science Foundation of China
文摘Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.
文摘Background: New normality is uncertain in every sense, specifically in education and for many health disciplines. Being immersed in COVID-19 pandemics brought serious consequences for mental health, and is very important to handle emotions and stress coping strategies to obtain positive outcomes. Objective: To identify the most frequent emotions, as well as the adaptation strategies to the new normality faced by the students of nursing. Methods: Qualitative and phenomenological research, with the participation of 20 students from both genders in the middle term of nursing career at Faculty of Higher Studies Iztacala, National Autonomous University of Mexico, from August to November 2021. Information was collected from a focal group for ten sessions;analysis was according to De Souza Minayo, and there was a signed informed consent letter from participants. Results: Four categories emerged with sub-categories. Category I Maximized emotions. Sub-categories: 1) Frustration, anger, disappointment;2) Personal disappointment, hopelessness, uncertainty;3) Depression. Category II Support elements close to the new normality. Sub-categories: 1) Family communication;2) Education for mental and physical health. Category III Stressing situations that exceeded the student. Sub-category: Disease in lovely ones. Category IV Stress coping strategies. Sub-categories: 1) Friends and relatives that help to get better;2) Family values. Informers pointed out to have maximized emotion, and having no self-control on its negative outcomes occurred;in addition, the situation was not favorable at home with several losses of loved ones, as well as a poor economy that threatened students to give up studies. Conclusion: Emotions facing this new normality are very important and should be attended to, their proper handling will result in a new learning of socio-emotional abilities, stress coping strategies development, better adaptation and informed decisions taken.
文摘Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results.