期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Uncertainties of snow cover extraction caused by the nature of topography and underlying surface 被引量:2
1
作者 Jun ZHAO YinFang SHI +1 位作者 YongSheng HUANG JieWen FU 《Journal of Arid Land》 SCIE CSCD 2015年第3期285-295,共11页
Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulatio... Manas River,the largest inland river to the north of the Tianshan Mountains,provides important water resources for human production and living.The seasonal snow cover and snowmelt play essential roles in the regulation of spring runoff in the Manas River Basin(MRB).Snow cover is one of the most significant input parameters for obtaining accurate simulations and predictions of spring runoff.Therefore,it is especially important to extract snow-covered area correctly in the MRB.In this study,we qualitatively and quantitatively analyzed the uncertainties of snow cover extraction caused by the terrain factors and land cover types using TM and DEM data,along with the Per(the ratio of the difference between snow-covered area extracted by the Normalized Difference Snow Index(NDSI) method and visual interpretation method to the actual snow-covered area) and roughness.The results indicated that the difference of snow-covered area extracted by the two methods was primarily reflected in the snow boundary and shadowy areas.The value of Per varied significantly in different elevation zones.That is,the value generally presented a normal distribution with the increase of elevation.The peak value of Per occurred in the elevation zone of 3,700–4,200 m.Aspects caused the uncertainties of snow cover extraction with the order of sunny slope〉semi-shady and semi-sunny slope〉shady slope,due to the differences in solar radiation received by each aspect.Regarding the influences of various land cover types on snow cover extraction in the study area,bare rock was more influential on snow cover extraction than grassland.Moreover,shrub had the weakest impact on snow cover extraction. 展开更多
关键词 Landsat TM normalized Difference Snow Index(NDSI) snow cover uncertainty Manas River Basin
下载PDF
Spatiotemporal changes of typical glaciers and their responses to climate change in Xinjiang,Northwest China
2
作者 HUANG Xiaoran BAO Anming +7 位作者 GUO Hao MENG Fanhao ZHANG Pengfei ZHENG Guoxiong YU Tao QI Peng Vincent NZABARINDA DU Weibing 《Journal of Arid Land》 SCIE CSCD 2022年第5期502-520,共19页
Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in... Glaciers are highly sensitive to climate change and are undergoing significant changes in mid-latitudes.In this study,we analyzed the spatiotemporal changes of typical glaciers and their responses to climate change in the period of 1990-2015 in 4 different mountainous sub-regions in Xinjiang Uygur Autonomous Region of Northwest China:the Bogda Peak and Karlik Mountain sub-regions in the Tianshan Mountains;the Yinsugaiti Glacier sub-region in the Karakorum Mountains;and the Youyi Peak sub-region in the Altay Mountains.The standardized snow cover index(NDSI)and correlation analysis were used to reveal the glacier area changes in the 4 sub-regions from 1990 to 2015.Glacial areas in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions in the period of 1990-2015 decreased by 57.7,369.1,369.1,and 170.4 km^(2),respectively.Analysis of glacier area center of gravity showed that quadrant changes of glacier areas in the 4 sub-regions moved towards the origin.Glacier area on the south aspect of the Karlik Mountain sub-region was larger than that on the north aspect,while glacier areas on the north aspect of the other 3 sub-regions were larger than those on the south aspect.Increased precipitation in the Karlik Mountain sub-region inhibited the retreat of glaciers to a certain extent.However,glacier area changes in the Bogda Peak and Youyi Peak sub-regions were not sensitive to the increased precipitation.On a seasonal time scale,glacier area changes in the Bogda Peak,Karlik Mountain,Yinsugaiti Glacier,and Youyi Peak sub-regions were mainly caused by accumulated temperature in the wet season;on an annual time scale,the correlation coefficient between glacier area and annual average temperature was-0.72 and passed the significance test at P<0.05 level in the Karlik Mountain sub-region.The findings of this study can provide a scientific basis for water resources management in the arid and semi-arid regions of Northwest China in the context of global warming. 展开更多
关键词 glacier area change normalized snow cover index(NDSI) climate change remote sensing Altay Mountains Tianshan Mountains Karakorum Mountains
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部