Let G be a simple connected graph with order n.Let L(G)and Q(G)be the normalized Laplacian and normalized signless Laplacian matrices of G,respectively.Letλk(G)be the k-th smallest normalized Laplacian eigenvalue of ...Let G be a simple connected graph with order n.Let L(G)and Q(G)be the normalized Laplacian and normalized signless Laplacian matrices of G,respectively.Letλk(G)be the k-th smallest normalized Laplacian eigenvalue of G.Denote byρ(A)the spectral radius of the matrix A.In this paper,we study the behaviors ofλ2(G)andρ(L(G))when the graph is perturbed by three operations.We also study the properties ofρ(L(G))and X for the connected bipartite graphs,where X is a unit eigenvector of L(G)corresponding toρ(L(G)).Meanwhile we characterize all the simple connected graphs withρ(L(G))=ρ(Q(G)).展开更多
For the stratified shallow water with a lossy bottom, the distribution and asymptotic behavior of mode eigenvalues in the complex plane are discussed on the basis of the Pekeris cut. The analysis shows that even in th...For the stratified shallow water with a lossy bottom, the distribution and asymptotic behavior of mode eigenvalues in the complex plane are discussed on the basis of the Pekeris cut. The analysis shows that even in the shallow water with a low-speed lossy bottom there may be the proper modes which satisfy the radiation condition at infinite depth. It is also shown that when the ratio between the densities of the seawater and seabottom is close to one, there exist only a finite number of improper modes . An iterative method for evaluating the complex eigenvalues and group velocities of normal modes is presented and some numerical results are given.展开更多
基金by the National Natural Science Foundation of China(No.11871398)the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2018JM1032)the Fundamental Research Funds for the Central Universities(No.3102019ghjd003).
文摘Let G be a simple connected graph with order n.Let L(G)and Q(G)be the normalized Laplacian and normalized signless Laplacian matrices of G,respectively.Letλk(G)be the k-th smallest normalized Laplacian eigenvalue of G.Denote byρ(A)the spectral radius of the matrix A.In this paper,we study the behaviors ofλ2(G)andρ(L(G))when the graph is perturbed by three operations.We also study the properties ofρ(L(G))and X for the connected bipartite graphs,where X is a unit eigenvector of L(G)corresponding toρ(L(G)).Meanwhile we characterize all the simple connected graphs withρ(L(G))=ρ(Q(G)).
文摘For the stratified shallow water with a lossy bottom, the distribution and asymptotic behavior of mode eigenvalues in the complex plane are discussed on the basis of the Pekeris cut. The analysis shows that even in the shallow water with a low-speed lossy bottom there may be the proper modes which satisfy the radiation condition at infinite depth. It is also shown that when the ratio between the densities of the seawater and seabottom is close to one, there exist only a finite number of improper modes . An iterative method for evaluating the complex eigenvalues and group velocities of normal modes is presented and some numerical results are given.