针对传统Mean shift跟踪算法对空中运动目标跟踪效果不理想的问题,提出了基于Mean shift算法和归一化转动惯量(Normalized moment of inertia,NMI)特征的目标跟踪算法.算法中引入了目标NMI特征,建立了基于虚警概率最小原则和相似度二级...针对传统Mean shift跟踪算法对空中运动目标跟踪效果不理想的问题,提出了基于Mean shift算法和归一化转动惯量(Normalized moment of inertia,NMI)特征的目标跟踪算法.算法中引入了目标NMI特征,建立了基于虚警概率最小原则和相似度二级判决门限的跟踪策略,对目标模型进行更新.同时利用卡尔曼滤波,在目标被遮挡后进行估计预测.实验表明该算法在空中运动目标存在较大形变、被遮挡等情况下,能够进行实时、稳定跟踪.展开更多
Network attack detection and mitigation require packet collection,pre-processing,feature analysis,classification,and post-processing.Models for these tasks sometimes become complex or inefficient when applied to real-...Network attack detection and mitigation require packet collection,pre-processing,feature analysis,classification,and post-processing.Models for these tasks sometimes become complex or inefficient when applied to real-time data samples.To mitigate hybrid assaults,this study designs an efficient forensic layer employing deep learning pattern analysis and multidomain feature extraction.In this paper,we provide a novel multidomain feature extraction method using Fourier,Z,Laplace,Discrete Cosine Transform(DCT),1D Haar Wavelet,Gabor,and Convolutional Operations.Evolutionary method dragon fly optimisation reduces feature dimensionality and improves feature selection accuracy.The selected features are fed into VGGNet and GoogLeNet models using binary cascaded neural networks to analyse network traffic patterns,detect anomalies,and warn network administrators.The suggested model tackles the inadequacies of existing approaches to hybrid threats,which are growing more common and challenge conventional security measures.Our model integrates multidomain feature extraction,deep learning pattern analysis,and the forensic layer to improve intrusion detection and prevention systems.In diverse attack scenarios,our technique has 3.5% higher accuracy,4.3% higher precision,8.5% higher recall,and 2.9% lower delay than previous models.展开更多
文摘针对传统Mean shift跟踪算法对空中运动目标跟踪效果不理想的问题,提出了基于Mean shift算法和归一化转动惯量(Normalized moment of inertia,NMI)特征的目标跟踪算法.算法中引入了目标NMI特征,建立了基于虚警概率最小原则和相似度二级判决门限的跟踪策略,对目标模型进行更新.同时利用卡尔曼滤波,在目标被遮挡后进行估计预测.实验表明该算法在空中运动目标存在较大形变、被遮挡等情况下,能够进行实时、稳定跟踪.
文摘Network attack detection and mitigation require packet collection,pre-processing,feature analysis,classification,and post-processing.Models for these tasks sometimes become complex or inefficient when applied to real-time data samples.To mitigate hybrid assaults,this study designs an efficient forensic layer employing deep learning pattern analysis and multidomain feature extraction.In this paper,we provide a novel multidomain feature extraction method using Fourier,Z,Laplace,Discrete Cosine Transform(DCT),1D Haar Wavelet,Gabor,and Convolutional Operations.Evolutionary method dragon fly optimisation reduces feature dimensionality and improves feature selection accuracy.The selected features are fed into VGGNet and GoogLeNet models using binary cascaded neural networks to analyse network traffic patterns,detect anomalies,and warn network administrators.The suggested model tackles the inadequacies of existing approaches to hybrid threats,which are growing more common and challenge conventional security measures.Our model integrates multidomain feature extraction,deep learning pattern analysis,and the forensic layer to improve intrusion detection and prevention systems.In diverse attack scenarios,our technique has 3.5% higher accuracy,4.3% higher precision,8.5% higher recall,and 2.9% lower delay than previous models.