期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
ON THE EXISTENCE OF FIXED POINTS FOR LIPSCHITZIAN SEMIGROUPS IN BANACH SPACES 被引量:1
1
作者 ZENG LUCHUAN, YANG YALI Department of Matematics, Shanghai Normal University, Shanghai 200234, China. 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2001年第3期397-404,共8页
Let C be a nonempty bounded subset of a p-uniformly convex Banach space X, and T = {T(t): t S} be a Lipschitzian semigroup on C with lim inf |||T(t)||| < Np, where Np is n→ t s the normal structure coefficient of ... Let C be a nonempty bounded subset of a p-uniformly convex Banach space X, and T = {T(t): t S} be a Lipschitzian semigroup on C with lim inf |||T(t)||| < Np, where Np is n→ t s the normal structure coefficient of X. Suppose also there exists a nonempty bounded closed convex subset E of C with the following properties: (P1)x: E implies ωω(χ) C E; (P2)T is asymptotically regular on E. The authors prove that there exists a z E such that T(s)z = z for all s S. Fruther, under the similar condition, the existence of fixed points of Lipschitzian semigroups in a uniformly convex Banach space is discussed. 展开更多
关键词 Fixed points Lipschitzian semigroups Asymptotic regularity normal structure coefficient Asymptotic center
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部