The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improv...The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.展开更多
In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effect...In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.展开更多
Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input t...Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.展开更多
Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributio...Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.展开更多
We present new connections among linear anomalous diffusion (AD), normal diffusion (ND) and the Central Limit Theorem (CLT). This is done by defining a point transformation to a new position variable, which we postula...We present new connections among linear anomalous diffusion (AD), normal diffusion (ND) and the Central Limit Theorem (CLT). This is done by defining a point transformation to a new position variable, which we postulate to be Cartesian, motivated by considerations from super-symmetric quantum mechanics. Canonically quantizing in the new position and momentum variables according to Dirac gives rise to generalized negative semi-definite and self-adjoint Laplacian operators. These lead to new generalized Fourier transformations and associated probability distributions, which are form invariant under the corresponding transform. The new Laplacians also lead us to generalized diffusion equations, which imply a connection to the CLT. We show that the derived diffusion equations capture all of the Fractal and Non-Fractal Anomalous Diffusion equations of O’Shaughnessy and Procaccia. However, we also obtain new equations that cannot (so far as we can tell) be expressed as examples of the O’Shaughnessy and Procaccia equations. The results show, in part, that experimentally measuring the diffusion scaling law can determine the point transformation (for monomial point transformations). We also show that AD in the original, physical position is actually ND when viewed in terms of displacements in an appropriately transformed position variable. We illustrate the ideas both analytically and with a detailed computational example for a non-trivial choice of point transformation. Finally, we summarize our results.展开更多
We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by u...We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.展开更多
This paper investigates topological transformation during normal grain growth by carrying out a computer vertex simulation. Results show that topological correlation agrees with the models proposed by Blanc et al. and...This paper investigates topological transformation during normal grain growth by carrying out a computer vertex simulation. Results show that topological correlation agrees with the models proposed by Blanc et al. and Weaire. Topological transformation occurs more often on grains with some topological classes instead of equal probability on each boundary. This can be qualitatively explained by topological correlation.展开更多
This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the propert...This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.展开更多
This paper analyzes the three big impact in the development of Chinese banking industry and discusses the limitations of financial innovation of Chinese banking industry.The results showed that:(1)deepening the bankin...This paper analyzes the three big impact in the development of Chinese banking industry and discusses the limitations of financial innovation of Chinese banking industry.The results showed that:(1)deepening the banking system innovation to adapt to the new situation;(2)improving customers’experience by deepening model innovation of the internet financial;(3)improving intensive of bank branch operation and the intelligent of network service with the aid of informatization;(4)Providing individualized,characteristic and differentiated services for high-quality customers of banks and enhancing customer value through lightweight network outlets;and(5)Adapting to the development of new entity economy by comprehensive management,optimizing the operation mode of outlets,and strengthening the supply side reform of commercial banks themselves.展开更多
In May 2014,Chairman Xi Jinping mentioned the "new normal" for the first time during his inspection of Henan,and proposed that China's development is still in an important period of strategic opportunity...In May 2014,Chairman Xi Jinping mentioned the "new normal" for the first time during his inspection of Henan,and proposed that China's development is still in an important period of strategic opportunity. It was advocated to promote the transformation and development of China's green economy and to go out an ecological path of green innovation,green production and green consumption. This paper mainly explains the current situation,problems,corresponding countermeasures and suggestions of the transformation and development of China's green economy under the new normal to let readers understand the necessity of the transformation and development of China's green economy.展开更多
Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyze...Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.展开更多
The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and th...The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).展开更多
The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in te...The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in terms of the original system coefficients were given explicitly. The nonlinear transformations were used for reducing the lower- and higher-order normal forms, and the rank of system matrix was used to determine the coefficient of normal form which could be reduced. These make the gained normal form simpler than the traditional one. A general program was compiled with Mathematica. This program can compute the simplest normal form of resonant double Hopf bifurcation and the non-resonant form up to the 7th order.展开更多
Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate v...Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.展开更多
Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fo...Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.展开更多
This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution o...This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.展开更多
A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fou...A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.展开更多
The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is define...The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.展开更多
The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seism...The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.展开更多
基金Supported by the National Science Foundation of China(42055402)。
文摘The conventional linear time-frequency analysis method cannot achieve high resolution and energy focusing in the time and frequency dimensions at the same time,especially in the low frequency region.In order to improve the resolution of the linear time-frequency analysis method in the low-frequency region,we have proposed a W transform method,in which the instantaneous frequency is introduced as a parameter into the linear transformation,and the analysis time window is constructed which matches the instantaneous frequency of the seismic data.In this paper,the W transform method is compared with the Wigner-Ville distribution(WVD),a typical nonlinear time-frequency analysis method.The WVD method that shows the energy distribution in the time-frequency domain clearly indicates the gravitational center of time and the gravitational center of frequency of a wavelet,while the time-frequency spectrum of the W transform also has a clear gravitational center of energy focusing,because the instantaneous frequency corresponding to any time position is introduced as the transformation parameter.Therefore,the W transform can be benchmarked directly by the WVD method.We summarize the development of the W transform and three improved methods in recent years,and elaborate on the evolution of the standard W transform,the chirp-modulated W transform,the fractional-order W transform,and the linear canonical W transform.Through three application examples of W transform in fluvial sand body identification and reservoir prediction,it is verified that W transform can improve the resolution and energy focusing of time-frequency spectra.
基金This work was funded by National Natural Science Foundation of China-(No. 40474044).
文摘In this paper, it is described that the time-frequency resolution of geophysical signals is affected by the time window function attenuation coefficient and sampling interval and how such effects are eliminated effectively. Improving the signal resolution is the key to signal time-frequency analysis processing and has wide use in geophysical data processing and extraction of attribute parameters. In this paper, authors research the effects of the attenuation coefficient choice of the Gabor transform window function and sampling interval on signal resolution. Unsuitable parameters not only decrease the signal resolution on the frequency spectrum but also miss the signals. It is essential to first give the optimum window and range of parameters through time-frequency analysis simulation using the Gabor transform. In the paper, the suggestions about the range and choice of the optimum sampling interval and processing methods of general seismic signals are given.
基金supported in part by the Major Project for New Generation of AI (2018AAA0100400)the National Natural Science Foundation of China (61836014,U21B2042,62072457,62006231)the InnoHK Program。
文摘Monocular 3D object detection is challenging due to the lack of accurate depth information.Some methods estimate the pixel-wise depth maps from off-the-shelf depth estimators and then use them as an additional input to augment the RGB images.Depth-based methods attempt to convert estimated depth maps to pseudo-LiDAR and then use LiDAR-based object detectors or focus on the perspective of image and depth fusion learning.However,they demonstrate limited performance and efficiency as a result of depth inaccuracy and complex fusion mode with convolutions.Different from these approaches,our proposed depth-guided vision transformer with a normalizing flows(NF-DVT)network uses normalizing flows to build priors in depth maps to achieve more accurate depth information.Then we develop a novel Swin-Transformer-based backbone with a fusion module to process RGB image patches and depth map patches with two separate branches and fuse them using cross-attention to exchange information with each other.Furthermore,with the help of pixel-wise relative depth values in depth maps,we develop new relative position embeddings in the cross-attention mechanism to capture more accurate sequence ordering of input tokens.Our method is the first Swin-Transformer-based backbone architecture for monocular 3D object detection.The experimental results on the KITTI and the challenging Waymo Open datasets show the effectiveness of our proposed method and superior performance over previous counterparts.
基金This work was supported by the National Natural Science Foundation of China(91538201)the Taishan Scholar Project of Shandong Province(ts201511020)the project supported by Chinese National Key Laboratory of Science and Technology on Information System Security(6142111190404).
文摘Recent advances in electronics have increased the complexity of radar signal modulation.The quasi-linear frequency modulation(quasi-LFM)radar waveforms(LFM,Frank code,P1−P4 code)have similar time-frequency distributions,and it is difficult to identify such signals using traditional time-frequency analysis methods.To solve this problem,this paper proposes an algorithm for automatic recognition of quasi-LFM radar waveforms based on fractional Fourier transform and time-frequency analysis.First of all,fractional Fourier transform and the Wigner-Ville distribution(WVD)are used to determine the number of main ridgelines and the tilt angle of the target component in WVD.Next,the standard deviation of the target component's width in the signal's WVD is calculated.Finally,an assembled classifier using neural network is built to recognize different waveforms by automatically combining the three features.Simulation results show that the overall recognition rate of the proposed algorithm reaches 94.17%under 0 dB.When the training data set and the test data set are mixed with noise,the recognition rate reaches 89.93%.The best recognition accuracy is achieved when the size of the training set is taken as 400.The algorithm complexity can meet the requirements of real-time recognition.
文摘We present new connections among linear anomalous diffusion (AD), normal diffusion (ND) and the Central Limit Theorem (CLT). This is done by defining a point transformation to a new position variable, which we postulate to be Cartesian, motivated by considerations from super-symmetric quantum mechanics. Canonically quantizing in the new position and momentum variables according to Dirac gives rise to generalized negative semi-definite and self-adjoint Laplacian operators. These lead to new generalized Fourier transformations and associated probability distributions, which are form invariant under the corresponding transform. The new Laplacians also lead us to generalized diffusion equations, which imply a connection to the CLT. We show that the derived diffusion equations capture all of the Fractal and Non-Fractal Anomalous Diffusion equations of O’Shaughnessy and Procaccia. However, we also obtain new equations that cannot (so far as we can tell) be expressed as examples of the O’Shaughnessy and Procaccia equations. The results show, in part, that experimentally measuring the diffusion scaling law can determine the point transformation (for monomial point transformations). We also show that AD in the original, physical position is actually ND when viewed in terms of displacements in an appropriately transformed position variable. We illustrate the ideas both analytically and with a detailed computational example for a non-trivial choice of point transformation. Finally, we summarize our results.
基金The project supported by the President Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056.
文摘We show that the technique of integration within an ordered product of operators can be extended to Hilbert transform. In so doing we derive normally ordered expansion of Coulomb potential-type operators directly by using the mathematical Hilbert transform formula.
基金We also thank the support from State Key Program for Basic Research of China(No.2003CB314702,No.2003CB314706)NSFC(No.10347125)+1 种基金the foundation of Doctoral Program of Ministrv of Education(No.20030286003)the foundation of Science and Technology of Southeast University(No.9206001270,No.9206001271)
文摘This paper investigates topological transformation during normal grain growth by carrying out a computer vertex simulation. Results show that topological correlation agrees with the models proposed by Blanc et al. and Weaire. Topological transformation occurs more often on grains with some topological classes instead of equal probability on each boundary. This can be qualitatively explained by topological correlation.
文摘This paper introduces the localized Radon transform (LRT) into time-frequency distributions and presents the localized Radon-Wigner transform (LRWT). The definition of LRWT and a fast algorithm is derived, the properties of LRWT and its relationship with Radon-Wigner transform, Wigner distribution (WD), ambiguity function (AF), and generalized-marginal time-frequency distributions are analyzed.
文摘This paper analyzes the three big impact in the development of Chinese banking industry and discusses the limitations of financial innovation of Chinese banking industry.The results showed that:(1)deepening the banking system innovation to adapt to the new situation;(2)improving customers’experience by deepening model innovation of the internet financial;(3)improving intensive of bank branch operation and the intelligent of network service with the aid of informatization;(4)Providing individualized,characteristic and differentiated services for high-quality customers of banks and enhancing customer value through lightweight network outlets;and(5)Adapting to the development of new entity economy by comprehensive management,optimizing the operation mode of outlets,and strengthening the supply side reform of commercial banks themselves.
文摘In May 2014,Chairman Xi Jinping mentioned the "new normal" for the first time during his inspection of Henan,and proposed that China's development is still in an important period of strategic opportunity. It was advocated to promote the transformation and development of China's green economy and to go out an ecological path of green innovation,green production and green consumption. This paper mainly explains the current situation,problems,corresponding countermeasures and suggestions of the transformation and development of China's green economy under the new normal to let readers understand the necessity of the transformation and development of China's green economy.
基金The National Natural Science Foundation of China(No.61301295,61273266,61301219,61201326,61003131)the Natural Science Foundation of Anhui Province(No.1308085QF100,1408085MF113)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20130241)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.12KJB510021)the Doctoral Fund of Anhui University
文摘Some factors influencing the intelligibility of the enhanced whisper in the joint time-frequency domain are evaluated. Specifically, both the spectrum density and different regions of the enhanced spectrum are analyzed. Experimental results show that for a spectrum of some density, the joint time-frequency gain-modification based speech enhancement algorithm achieves significant improvement in intelligibility. Additionally, the spectrum region where the estimated spectrum is smaller than the clean spectrum, is the most important region contributing to intelligibility improvement for the enhanced whisper. The spectrum region where the estimated spectrum is larger than twice the size of the clean spectrum is detrimental to speech intelligibility perception within the whisper context.
基金financially supported by the National 973 Project(No.2014CB239006)the National Natural Science Foundation of China(No.41104069 and 41274124)the Fundamental Research Funds for Central Universities(No.R1401005A)
文摘The resolution of seismic data is critical to seismic data processing and the subsequent interpretation of fine structures. In conventional resolution improvement methods, the seismic data is assumed stationary and the noise level not changes with space, whereas the actual situation does not satisfy this assumption, so that results after resolution improvement processing is not up to the expected effect. To solve these problems, we propose a seismic resolution improvement method based on the secondary time-frequency spectrum. First, we propose the secondary time-frequency spectrum based on S transform (ST) and discuss the reflection coefficient sequence and time-dependent wavelet in the secondary time frequency spectrum. Second, using the secondary time frequency spectrum, we design a two- dimensional filter to extract the amplitude spectrum of the time-dependent wavelet. Then, we discuss the improvement of the resolution operator in noisy environments and propose a novel approach for determining the broad frequency range of the resolution operator in the time- fi'equency-space domain. Finally, we apply the proposed method to synthetic and real data and compare the results of the traditional spectrum-modeling deconvolution and Q compensation method. The results suggest that the proposed method does not need to estimate the Q value and the resolution is not limited by the bandwidth of the source. Thus, the resolution of the seismic data is improved sufficiently based on the signal-to-noise ratio (SNR).
基金Supported by National Natural Science Foundation of China(No. 10372068).
文摘The simplest normal form of resonant double Hopf bifurcation was studied based on Lie operator. The coefficients of the simplest normal forms of resonant double Hopf bifurcation and the nonlinear transformations in terms of the original system coefficients were given explicitly. The nonlinear transformations were used for reducing the lower- and higher-order normal forms, and the rank of system matrix was used to determine the coefficient of normal form which could be reduced. These make the gained normal form simpler than the traditional one. A general program was compiled with Mathematica. This program can compute the simplest normal form of resonant double Hopf bifurcation and the non-resonant form up to the 7th order.
文摘Early detection of sudden cardiac death may be used for surviving the life of cardiac patients. In this paper we have investigated an algorithm to detect and predict sudden cardiac death, by processing of heart rate variability signal through the classical and time-frequency methods. At first, one minute of ECG signals, just before the cardiac death event are extracted and used to compute heart rate variability (HRV) signal. Five features in time domain and four features in frequency domain are extracted from the HRV signal and used as classical linear features. Then the Wigner Ville transform is applied to the HRV signal, and 11 extra features in the time-frequency (TF) domain are obtained. In order to improve the performance of classification, the principal component analysis (PCA) is applied to the obtained features vector. Finally a neural network classifier is applied to the reduced features. The obtained results show that the TF method can classify normal and SCD subjects, more efficiently than the classical methods. A MIT-BIH ECG database was used to evaluate the proposed method. The proposed method was implemented using MLP classifier and had 74.36% and 99.16% correct detection rate (accuracy) for classical features and TF method, respectively. Also, the accuracy of the KNN classifier were 73.87% and 96.04%.
基金the National Key Research and Development Program of China(No.2016YFC060110403).
文摘Herein,a three-dimensional(3D)inversion method in the frequency domain based on a time–frequency transformation was developed to improve the efficiency of the 3D inversion of transient electromagnetic(TEM)data.The Fourier transform related to the electromagnetic response in the frequency and time domains becomes a sine or cosine transform under the excitation of downward-step current.We established a transformation matrix based on the digital fi ltering calculation for the sine transform,and then the frequency domain projection of the TEM data was determined from the linear transformation system using the smoothing constrained least squares inversion method,in which only the imaginary part was used to maintain the TEM data transformation equivalence in the bidirectional projection.Thus,the time-domain TEM inversion problem was indirectly and effectively solved in the frequency domain.In the 3D inversion of the transformed frequency-domain data,the limited-memory Broyden–Fletcher–Goldfarb–Shannoquasi–Newton(L-BFGS)method was used and modifi ed with a restart strategy to adjust the regularization parameter when the algorithm tended to a local minimum.Synthetic data tests showed that our domain transformation method can stably project the TEM data into the frequency domain with very high accuracy;furthe rmore,the 3D inversion of the transformed frequency-domain data is stable,can be used to recover the real resistivity model with an acceptable effi ciency.
基金supported by the National Natural Science Foundation of China(611011726137118461301262)
文摘This paper proposes a new method for estimating the parameter of maneuvering targets based on sparse time-frequency transform in over-the-horizon radar(OTHR). In this method, the sparse time-frequency distribution of the radar echo is obtained by solving a sparse optimization problem based on the short-time Fourier transform. Then Hough transform is employed to estimate the parameter of the targets. The proposed algorithm has the following advantages: Compared with the Wigner-Hough transform method, the computational complexity of the sparse optimization is low due to the application of fast Fourier transform(FFT). And the computational cost of Hough transform is also greatly reduced because of the sparsity of the time-frequency distribution. Compared with the high order ambiguity function(HAF) method, the proposed method improves in terms of precision and robustness to noise. Simulation results show that compared with the HAF method, the required SNR and relative mean square error are 8 dB lower and 50 dB lower respectively in the proposed method. While processing the field experiment data, the execution time of Hough transform in the proposed method is only 4% of the Wigner-Hough transform method.
基金Supported by the National Natural Science Fundation of China(Grant No.69775009)
文摘A new time-frequency representation called Dopplerlet transform, which uses the dilated, translated and modulated windowed Doppler signals as its basis functions, is proposed, and the Fourier transform, short-time Fourier transform (including Gabor transform), wavelet transform, and chirplet transform are formulated in one framework of Dopplerlet transform accordingly.It is proved that the matching pursuits based on Dopplerlet basis functions are convergent, and that the energy of residual signals yielded in the decomposition process decays exponentially. Simulation results show that the matching pursuits with Dopplerlet basis functions can characterize compactly a nonstationary signal.
文摘The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.
基金This work was supported by The National Key Research and Development Program(No.2016YFC0600505 and 2018YFC0603701)National Natural Science Foundation(No.41974134 and 41774127).
文摘The Q-factor is an important physical parameter for characterizing the absorption and attenuation of seismic waves propagating in underground media,which is of great signifi cance for improving the resolution of seismic data,oil and gas detection,and reservoir description.In this paper,the local centroid frequency is defi ned using shaping regularization and used to estimate the Q values of the formation.We propose a continuous time-varying Q-estimation method in the time-frequency domain according to the local centroid frequency,namely,the local centroid frequency shift(LCFS)method.This method can reasonably reduce the calculation error caused by the low accuracy of the time picking of the target formation in the traditional methods.The theoretical and real seismic data processing results show that the time-varying Q values can be accurately estimated using the LCFS method.Compared with the traditional Q-estimation methods,this method does not need to extract the top and bottom interfaces of the target formation;it can also obtain relatively reasonable Q values when there is no eff ective frequency spectrum information.Simultaneously,a reasonable inverse Q fi ltering result can be obtained using the continuous time-varying Q values.