期刊文献+
共找到149篇文章
< 1 2 8 >
每页显示 20 50 100
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
1
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Superplastic solid state welding of steel and copper alloy based on laser quenching of steel surface 被引量:6
2
作者 张柯柯 韩彩霞 +3 位作者 权淑丽 程光辉 杨洁 杨蕴林 《中国有色金属学会会刊:英文版》 CSCD 2005年第2期384-388,共5页
Based on the feasibility of isothermal superplastic solid state welding of steel and copper alloy, the welded surface of steel surface was ultra-fined through laser quenching, and then the welding process tests betwee... Based on the feasibility of isothermal superplastic solid state welding of steel and copper alloy, the welded surface of steel surface was ultra-fined through laser quenching, and then the welding process tests between different base metals of 40Cr and QCr0.5 were made under the condition of non vacuum and non shield gas. The experimental results show that, with the sample surface of steel after laser quenching and that of copper alloy carefully cleaned, and under the pre-pressed stress of 56.684.9 MPa, at the welding temperature of 750800 ℃ and at initial strain rate of (2.57.5)×10-4 s-1, the solid state welding can be finished in 120180 s so that the strength of the joint is up to that of QCr0.5 base metal and the expansion rate of the joint does not exceed 6%. The plastic deformation of the joint was further analysed. The superplastic deformation of the copper alloy occurs in welding process and the deformation of steel are little. 展开更多
关键词 铜合金 钢材 激光淬火 超塑性形变 固态焊接
下载PDF
Electron beam welding of 304 stainless steel to QCr0.8 copper alloy with copper filler wire 被引量:5
3
作者 张秉刚 赵健 +1 位作者 李晓鹏 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第12期4059-4066,共8页
Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ... Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa. 展开更多
关键词 304 stainless steel QCr0.8 copper alloy electron beam welding dissimilar joint mechanical properties
下载PDF
Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel 被引量:6
4
作者 Hamed Jamshidi Aval 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第11期1294-1303,共10页
Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investiga... Dissimilar joints comprised of copper–nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper–nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper–nickel base metal, respectively. 展开更多
关键词 dissimilar FRICTION STIR welding copper–nickel alloy AUSTENITIC STAINLESS steel microstructure MECHANICAL properties
下载PDF
Microstructures and properties analysis of dissimilar metal joint in the friction stir welded copper to aluminum alloy 被引量:9
5
作者 王希靖 张忠科 +1 位作者 达朝炳 李晶 《China Welding》 EI CAS 2007年第1期57-62,共6页
This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and... This paper mainly concentrated on the feasibility of friction stir welding of dissimilar metal of aluminum alloy to copper (I2) and a preliminary analysis of welding parameters influencing on the microstructures and properties of joint was carried out. The results indicated that the thickness of workpiece played an important role in the welding parameters which could succeed in the friction stir welding of dissimilar metal of copper to aluminum alloy, and the parameters were proved to be a narrow choice. The interfacial region between copper and aluminum in the dissimilar joint was not uniformly mixed, constituted with part of incomplete mixing zone, complete mixing zone, dispersion zone and the most region' s boundary was obvious. Meantime a kind banded structure with inhomogeneous width was formed. The intermetallic compounds generated during friction stir welding in the interfacial region were mainly CugAl4, Al2Cu etc, and their hardness was higher than oihers. 展开更多
关键词 friction stir welding dissimilar metals copper aluminum alloy
下载PDF
Application of response surface methodology to maximize tensile strength and minimize interface hardness of friction welded dissimilar joints of austenitic stainless steel and copper alloy 被引量:6
6
作者 G. VAIRAMANI T. SENTHIL KUMAR +1 位作者 S. MALARVIZHI V. BALASUBRAMANIAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2250-2259,共10页
An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copp... An attempt was made to optimize friction welding parameters to attain a minimum hardness at the interface and a maximum tensile strength of the dissimilar joints of AISI 304 austenitic stainless steel (ASS) and copper (Cu) alloy using response surface methodology (RSM). Three-factor, five-level central composite design matrix was used to specify experimental conditions. Twenty joints were fabricated using ASS and Cu alloy. Tensile strength and interface hardness were measured experimentally. Analysis of variance (ANOVA) method was used to find out significant main and interaction parameters and empirical relationships were developed using regression analysis. The friction welding parameters were optimized by constructing response graphs and contour plots using design expert software. The developed empirical relationships can be effectively used to predict tensile strength and interface hardness of friction welded ASS-Cu joints at 95% confidence level. The developed contour plots can be used to attain required level of optimum conditions to join ASS-Cu alloy by friction welding process. 展开更多
关键词 friction welding austenitic stainless steel copper alloy tensile strength interface hardness response surface methodology
下载PDF
Influence of welding parameters on material flow,mechanical property and intermetallic characterization of friction stir welded AA6063 to HCP copper dissimilar butt joint without offset 被引量:3
7
作者 T.K.BHATTACHARYA H.DAS T.K.PAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期2833-2846,共14页
Joining of dissimilar aluminium-copper is an emerging area of interest for both research and industry due to its complex nature.Friction stir welding was attempted to evaluate the joint strength without offset at the ... Joining of dissimilar aluminium-copper is an emerging area of interest for both research and industry due to its complex nature.Friction stir welding was attempted to evaluate the joint strength without offset at the butt line between AA6063 to HCP copper sheet under different combination of rotational speed of 800 and 1000 r/min and travel speed of 20 and 40 mm/min.Material flow was studied in detail for different combinations of parameters with optical microscopy and elemental mapping by energy dispersive X-ray spectroscopy(EDS).The results were correlated with the microstructural characteristics and formation of intermetallics at the bond interface using microhardness test and X-ray diffraction(XRD) technique.Material flow clearly suggests that energy input at 800 r/min and 20 mm/min is sufficient to plasticize both the materials with formation of higher amount of thermodynamically stable and hard intermetallic phases Al4Cu9 and Al Cu4(slower cooling rate of 88 K/s) than that at 800 r/min and 40 mm/min(faster cooling rate of 154 K/s),attributed maximum joint strength(~78.6% of aluminium base metal). 展开更多
关键词 friction stir welding(FSW) AA6063 alloy HCP copper material flow
下载PDF
Effect of Fe content on the friction and abrasion properties of copper base overlay on steel substrate by TIG welding 被引量:1
8
作者 吕世雄 宋建岭 +1 位作者 刘磊 杨士勤 《China Welding》 EI CAS 2009年第3期55-59,共5页
Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning... Copper base alloy was overlaid onto 35CrMnSiA steel plate by tungsten inert gas (TIG) welding method. The heat transfer process was simulated, the microstructures of the copper base overlay were analyzed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS), and the friction and abrasion properties of the overlay were measured. The results show that the Fe content increases in the overlay with increasing the welding current. And with the increase of Fe content in the overlay, the friction coefficient increases and the wear mechanism changes from oxidation wear to abrasive wear and plough wear, which is related to the size and quantity of Fe grains in the overlay. While with the increase of Fe content in the overlay, the protection of oxidation layer against the oxidation wear on the melted metal decreases. 展开更多
关键词 Fe content copper base alloy TIG welding overlay friction and abrasion
下载PDF
Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper 被引量:4
9
作者 Esther T.AKINLABI Anthony ANDREWS Stephen A.AKINLABI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1323-1330,共8页
The influence of friction stir welding processing parameters on dissimilar joints conducted between aluminium alloy (AA5754) and commercially pure copper (C11000) was studied. The welds were produced by varying th... The influence of friction stir welding processing parameters on dissimilar joints conducted between aluminium alloy (AA5754) and commercially pure copper (C11000) was studied. The welds were produced by varying the rotational speed from 600 to 1200 r/min and the feed rate from 50 to 300 mm/min. The resulting microstructure and the corrosion properties of the welds produced were studied. It was found that the joint interfacial regions of the welds were characterized by interlayers of aluminium and copper. The corrosion tests revealed that the corrosion resistance of the welds was improved as the rotational speed was increased. The corrosion rates of the welds compared to the base metals were improved compared with Cu and decreased slightly compared with the aluminium alloy. The lowest corrosion rate was obtained at welds produced at rotational speed of 950 r/min and feed rate of 300 mm/min which corresponds to a weld produced at a low heat input. 展开更多
关键词 aluminium alloy copper CORROSION friction stir weld processing parameters
下载PDF
Corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding in alkaline solution 被引量:2
10
作者 Kamran AMINI Farhad GHARAVI 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第6期1573-1581,共9页
This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper... This study was done to evaluate the nugget zone(NZ)corrosion behavior of dissimilar copper/brass joints welded by friction stir lap welding(FSLW)in a solution of 0.015 mol/L borax(pH 9.3).To this end,dissimilar copper/brass plates were welded with two dissimilar heat inputs(low and high)during the welding procedure.The high and low heat inputs were conducted with 710 r/min,16 mm/min and 450 r/min,25 mm/min,respectively.Using open circuit potential(OCP)measurements,electrochemical impedance spectroscopy(EIS)and Tafel polarization tests,the electrochemical behavior of the specimens in borate buffer solution was assessed.With the help of scanning electron microscope(SEM),the morphology of welded specimen surfaces was examined after immersion in the test solution.According to the results,the NZ grain size and resistance improvement reduced due to the nugget zone corrosion with a decreased heat input.The results obtained from Tafel polarization and EIS indicated the improved corrosion behavior of the welded specimen NZ with a decrease in the heat input during the welding process unlike the copper and brass metals.Furthermore,an increased heat input during the welding process shows a reduction in the conditions for forming the passive films with higher protection behavior. 展开更多
关键词 friction stir welding copper brass alloy corrosion behavior alkaline solution dissimilar joint
下载PDF
Refill Friction Stir Spot Welding Al Alloy to Copper via Pure Metallurgical Joining Mechanism 被引量:1
11
作者 Zhikang Shen Yuquan Ding +6 位作者 Wei Guo Wentao Hou Xiaochao Liu Haiyan Chen Fenjun Liu Wenya Li Adrian Gerlich 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第4期90-97,共8页
The current investigation of refill friction stir spot welding(refill FSSW)Al alloy to copper primarily involved plunging the tool into bottom copper sheet to achieve both metallurgical and mechanical interfacial bond... The current investigation of refill friction stir spot welding(refill FSSW)Al alloy to copper primarily involved plunging the tool into bottom copper sheet to achieve both metallurgical and mechanical interfacial bonding.Compared to conventional FSSW and pinless FSSW,weld strength can be significantly improved by using this method.Nevertheless,tool wear is a critical issue during refill FSSW.In this study,defect-free Al/copper dissimilar welds were successfully fabricated using refill FSSW by only plunging the tool into top Al alloy sheet.Overall,two types of continuous and ultra-thin intermetallic compounds(IMCs)layers were identified at the whole Al/copper interface.Also,strong evidence of melting and resolidification was observed in the localized region.The peak temperature obtained at the center of Al/copper interface was 591℃,and the heating rate reached up to 916℃/s during the sleeve penetration phase.A softened weld region was produced via refill FSSW process,the hardness profile exhibited a W-shaped appearance along middle thickness of top Al alloy.The weld lap shear load was insensitive to the welding condition,whose scatter was rather small.The fracture path exclusively propagated along the IMCs layer of Cu_(9)Al_(4) under the external lap shear loadings,both CuAl_(2) and Cu_(9)Al_(4) were detected on the fractured surface on the copper side.This research indicated that acceptable weld strength can be achieved via pure metallurgical joining mechanism,which has significant potential for the industrial applications. 展开更多
关键词 Refill friction stir spot welding Al alloy copper Interfacial microstructure Mechanical properties
下载PDF
Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding 被引量:9
12
作者 张秋征 宫文彪 刘威 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第6期1779-1786,共8页
Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of... Dissimilar friction stir welding between 1060 aluminum alloy and annealed pure copper sheet with a thickness of 3 mm was investigated. Sound weld was obtained at a rotational speed of 1050 r/min and a welding speed of 30 mm/min. Intercalation structure formed at the crown and Cu/weld nugget (WN) area promotes interracial diffusion and metallurgical bonding of aluminum and copper. However, corrosion morphology reveals the weak bonding mechanism of internal interface, which causes the joint failing across the interface with a brittle-ductile mixed fracture mode. The tensile strength of the joint is 148 MPa, which is higher than that of the aluminum matrix. Crystal defects and grain refinement by severely plastic deformation during friction stir welding facilitate short circuit diffusion and thus accelerate the formation of A14Cu9 and A12Cu intermetallic compounds (IMCs). XRD results show that A14Cu9 is mainly in Cu/WN transition zone. The high dislocation density and formation of dislocation loops are the major reasons of hardness increase in the WN. 展开更多
关键词 aluminum alloy copper friction stir welding dissimilar material microstructure mechanical properties
下载PDF
Microstructure of deep cryogenic treatment electrode for resistance spot welding of aluminium alloy
13
作者 吴志生 高珊 +3 位作者 赵菲 陈晓燕 阴旭 王晓峰 《China Welding》 EI CAS 2010年第4期49-53,共5页
Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and... Cr-Zr-Cu alloy electrodes for resistance spot welding of aluminium alloy are treated by deep cryogenic treatment processes. The Cr-Zr-Cu alloy electrodes are analyzed by transmission electron microscope( TEM ) , and results show that the common dislocation in Cr-Zr-Cu alloy electrodes is changed into the dislocation loop, and twin crystal is found after deep cryogenic treatment. The parallel twin crystal band is observed by selected electron diffraction(SED) and the twin crystal plane is marked as ( 111 ). The Cr-Zr-Cu alloy electrode is studied by X-ray diffraction( XRD ) and results show that the intensity of diffraction peak is obviously changed after deep cryogenic treatment, and the grain rotates to preferred orientation. The Cr-Zr- Cu alloy electrode is studied by positron annihilation technique (PAT) and results indicate that the amount of vacancy defects is less than that of Cr-Zr-Cu alloy before deep cryogenic treatment. The main elements in Cr-Zr-Cu alloy are studied with X- ray photoelctron spectroscopy( XPS ) and the intensity of spectrum peak is increased after deep cryogenic treatment. 展开更多
关键词 MICROSTRUCTURE deep cryogenic treatment copper alloy ELECTRODE resistance spot welding
下载PDF
Research on microstructures and properties of electron beam welding joints of Ti-Ni-Cu
14
作者 陈国庆 张秉刚 +1 位作者 左跃 冯吉才 《China Welding》 EI CAS 2011年第2期51-55,共5页
This paper reports research into the microstructures and technology of electron beam butt welding joints between copper alloy and titanium alloy sheet. Ni was introduced as an interlayer for electron beam welding test... This paper reports research into the microstructures and technology of electron beam butt welding joints between copper alloy and titanium alloy sheet. Ni was introduced as an interlayer for electron beam welding test. The structure of the joint and phases present were analyzed, as well as the fracture mechanism and fracture site of the joint. When the Ni interlayer was added, the most of the weld was composed of a copper and nickel based solid solution. Only a small amount of the brittle TiCu phase was present, replaced by Ti-Ni-Cu compounds with better performance. Compared with welds without the added interlayer, the tensile strength of the joint was improved significantly. 展开更多
关键词 titanium alloy copper alloy electron beam welding INTERLAYER
下载PDF
Microstructure and performance of dissimilar joint QCr0.8/TC4 welded by uncentered electron beam 被引量:5
15
作者 LIU Wei,ZHANG Binggang,HE Jingshan and ZHAO Haisheng State Key Laboratory of Advanced Welding Production Technology,Harbin Institute of Technology,Harbin 150001,China 《Rare Metals》 SCIE EI CAS CSCD 2007年第S1期344-348,共5页
The mechanical property of dissimilar metal joint between QCr0.8 and TC4 alloy made with centered electron beam is bad and the highest tensile strength of the joint is only about 82.1 MPa.The bad mechanical property i... The mechanical property of dissimilar metal joint between QCr0.8 and TC4 alloy made with centered electron beam is bad and the highest tensile strength of the joint is only about 82.1 MPa.The bad mechanical property is mainly caused by the asymmetric fusion of the two base metals and the generation of the brittle Ti-Cu intermetallic compounds.The finite element analysis shows that the amount of the melted QCr0.8 copper alloy can be added to reduce the amount of the brittle intermetallic compounds.The bias distance to the copper alloy hc has obvious effect on the tensile strength.When hc=0.8 mm,the tensile strength of the joint can reach 270.5 MPa.The reaction layer near the fusion line on the TC4 side consists of the intermetallic compound and the melted base metal which does not react.The joint fractures at the reaction layer and presents quasi-cleavage or transcrystalline rupture in tensile tests. 展开更多
关键词 QCr0.8 copper alloy TC4 alloy uncentered electron beam welding
下载PDF
Mechanical Properties of Laser Welded Joint of Copper and Steel Dissimilar Metals
16
作者 REN Yiwen TAO Junhui +8 位作者 LI Jie CHEN Xinqi ZHANG Lin WANG Chuanhui JIN Haiqin QI Hongyan WANG Zhuo XIE Xing PAN Jie 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2023年第1期68-76,共9页
In this research project,copper and stainless steel were connected by two laser welding methods:straight seam welding and swing welding.Then,electronic tensile test machine,X-ray diffractometer,scanning electron micro... In this research project,copper and stainless steel were connected by two laser welding methods:straight seam welding and swing welding.Then,electronic tensile test machine,X-ray diffractometer,scanning electron microscope and metallographic microscope were used to analyze the tensile properties,macroscopic and microscopic structure morphology and phase of the welded joint.Based on the experimental results,we determined that the strength of the straight seam welded joint was higher.Because of the intermetallic compound near the weld in the swing welding process,it leads to stress concentration,crack cracking and strength reduction.In addition,the oscillating laser beam also leads to the disorderly direction of columnar crystal and coarse structure,which makes the joint strength decrease. 展开更多
关键词 copper steel dissimilar alloy laser welding mechanical properties
原文传递
Dissimilar Joining of Pure Copper to Aluminum Alloy via Friction Stir Welding 被引量:7
17
作者 Farhad Bakhtiari Argesi Ali Shamsipur Seyyed Ehsan Mirsalehi 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第11期1183-1196,共14页
In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate wa... In this study, the dissimilar friction stir welding (FSW) butt joints between aluminum alloy 5754-H114 and commerciallypure copper were investigated. The thickness of welded plates was 4 mm and the aluminum plate was placed on theadvancing side. In order to obtain a suitable flow and a better material mixing, a 1-mm offset was considered for thealuminum plate, toward the butt centerline. For investigating the microstructure and mechanical properties of FSWedjoints, optical microscopy and mechanical tests (i.e., uniaxial tensile test and microhardness) were used, respectively.Furthermore, the analysis of intermetallic compounds and fracture surface was examined by scanning electron microscopyand X-ray diffraction. The effect of heat generation on the mechanical properties and microstructure of the FSWed jointswas investigated. The results showed that there is an optimum amount of heat input. The intermetallic compounds formedin FSWed joints were A14Cu9 and AI2Cu. The best results were found in joints with 1000 rpm rotational speed and100 mm/min travel speed. The tensile strength was found as 219 MPa, which reached 84% of the aluminum base strength.Moreover, maximum value of the microhardness of the stir zone (SZ) was attained as about 120 HV, which was greatlydepended on the grain size, intermetallic compounds and copper pieces in SZ. 展开更多
关键词 Friction stir welding 5754-H114 aluminum alloy Pure copper Heat generation MICROSTRUCTURE Intermetallic compounds
原文传递
铝合金与镀铜钢CMT熔钎焊技术研究
18
作者 单琪 张超 +1 位作者 谢鹏 何兵 《热加工工艺》 北大核心 2024年第1期48-52,57,共6页
采用Al Si12药芯焊丝作为填充材料,对2 mm厚的6082铝合金与Q235B镀铜钢进行对接冷金属过渡(CMT)熔钎焊接试验,研究不同焊接速度和镀铜层厚度对接头焊缝成型、界面组织和力学性能的影响,探讨Cu元素对金属间化合物层(IMC)生长的影响。结... 采用Al Si12药芯焊丝作为填充材料,对2 mm厚的6082铝合金与Q235B镀铜钢进行对接冷金属过渡(CMT)熔钎焊接试验,研究不同焊接速度和镀铜层厚度对接头焊缝成型、界面组织和力学性能的影响,探讨Cu元素对金属间化合物层(IMC)生长的影响。结果表明:当焊接速度为350 mm/min时,铝在钢板正反面均有良好的润湿铺展,焊缝成型美观;IMC层厚度过大或过小均会对接头性能产生不利影响,当镀铜层厚度为10μm时,IMC层厚度为2.38μm,接头抗拉强度达到峰值138.7 MPa,相较于未镀铜接头的提高了31.9%,接头断裂于铝侧热影响区。镀铜层可以抑制界面层中θ-Fe(Al,Si)_(3)相的生成,阻碍Al、Fe反应,降低IMC层厚度。适当的镀铜层厚度可以有效改善接头的力学性能。镀铜层厚度过大促使Al_(2)Cu相产生,成为接头的薄弱区域。 展开更多
关键词 铝合金 镀铜钢 CMT熔钎焊 金属间化合物(IMC)
下载PDF
铜及铜合金激光熔化焊接工艺的研究进展
19
作者 郑江鹏 扈金富 +2 位作者 王家赞 王枭 孙涛 《热加工工艺》 北大核心 2024年第13期6-12,29,共8页
激光熔化焊接被认为是连接铜的一种合适工艺,但铜对工业应用最为成熟的红外激光的吸收率非常低,采用红外激光对铜进行焊接还存在一定的挑战。与红外激光相比,铜对短波长的可见光激光的吸收率可提高数倍,因此可见光激光在铜的快速、高质... 激光熔化焊接被认为是连接铜的一种合适工艺,但铜对工业应用最为成熟的红外激光的吸收率非常低,采用红外激光对铜进行焊接还存在一定的挑战。与红外激光相比,铜对短波长的可见光激光的吸收率可提高数倍,因此可见光激光在铜的快速、高质量焊接方面展现出巨大潜力。本文总结了近年来铜及其合金的激光熔化焊接工艺研究进展,对铜的红外激光、可见光激光以及双光束复合激光焊接技术进行了介绍,对比了不同工艺的优缺点,最后对可见光激光焊接和复合焊接技术的应用进行了展望。 展开更多
关键词 铜和铜合金 红外激光 可见光激光 双光束激光 激光焊接
下载PDF
铜/钛异种金属焊接微观组织及力学性能研究 被引量:3
20
作者 潘明财 周杰 +1 位作者 郭顺 兰司 《铜业工程》 CAS 2023年第2期1-7,共7页
研究采用电子束偏置铜侧的方法完成了T2铜和TC4的异种金属焊接,并采用光学显微镜(OM)、扫描电镜(SEM)、显微硬度及抗拉强度测试等方式分析其微观组织及力学性能特征。研究结果表明:铜侧焊接具有成形较好的焊缝,焊缝表面鱼鳞纹较均匀,成... 研究采用电子束偏置铜侧的方法完成了T2铜和TC4的异种金属焊接,并采用光学显微镜(OM)、扫描电镜(SEM)、显微硬度及抗拉强度测试等方式分析其微观组织及力学性能特征。研究结果表明:铜侧焊接具有成形较好的焊缝,焊缝表面鱼鳞纹较均匀,成形较好,无明显的微裂纹、气孔以及夹渣现象,电子束焊接可实现单侧焊接双面成形。钛合金侧焊缝可观察到宽度25~40μm的金属间化合物层,金属间化合物层由多种反应产物组成,金属间化合物层的存在将恶化接头的力学性能。在偏铜侧1.5 mm焊接时,抗拉强度可达到152 MPa,相当于T2 Cu抗拉强度的66%,拉伸断口表现为脆性解理断裂,引起断裂的主要物相为CuTi相。 展开更多
关键词 钛合金 铜合金 电子束焊接 微观组织 力学性能
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部