To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary stat...To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.展开更多
As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude deter...As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude determination.The error influence of different benchmarks and the disintegration mode between the star sensor and the gyro is analyzed in theory.The integrated design of the star sensor and the gyro on the same benchmark can effectively avoid the error influence and improves the spacecraft attitude determination accuracy.Simulation results indicate that when the stars sensor optical axis vectors overlap the reference coordinate axis of the gyro in the same benchmark,the attitude determination accuracy improves.展开更多
The non-linearity problem of aircraft system could not be overcome by using the MEMS sensor only.In order to improve the accuracy of aerial vehicle attitude,an aircraft attitude estimation of the MEMS sensor based on ...The non-linearity problem of aircraft system could not be overcome by using the MEMS sensor only.In order to improve the accuracy of aerial vehicle attitude,an aircraft attitude estimation of the MEMS sensor based on modified particle filter is proposed.The aircraft attitude is optimized by the conjugate gradient method,and the drift error of gyroscope is reduced.Moreover,the particle weight is updated by the observed value to obtain an optimized state estimate.Finally,the conjugate gradient method and the modified particle filter are weightily combined to determine the optimal weighting factor.The attitude estimation is carried out with STM32 and MEMS sensor as the core to design system.The experimental results show that the static and dynamic attitude estimation performances of the aircraft are improved.The performances are well,the attitude data is relatively stable,and the tracking characteristics are better.Moreover,it has better robustness and stability.展开更多
基金supported by the National Natural Science Foundation of China (60874054)
文摘To diagnose the fault of attitude sensors in satellites, this paper proposes a novel approach based on the Kalman filter of the discrete-time descriptor system. By regarding the sensor fault term as the auxiliary state vector, the attitude measurement system subjected to the attitude sensor fault is modeled by the discrete-time descriptor system. The condition of estimability of such systems is given. And then a Kalman filter of the discrete-time descriptor system is established based on the methodology of the maximum likelihood estimation. With the descriptor Kalman filter, the state vector of the original system and sensor fault can be estimated simultaneously. The proposed method is able to esti-mate an abrupt sensor fault as well as the incipient one. Moreover, it is also effective in the multiple faults scenario. Simulations are conducted to confirm the effectiveness of the proposed method.
文摘As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude determination.The error influence of different benchmarks and the disintegration mode between the star sensor and the gyro is analyzed in theory.The integrated design of the star sensor and the gyro on the same benchmark can effectively avoid the error influence and improves the spacecraft attitude determination accuracy.Simulation results indicate that when the stars sensor optical axis vectors overlap the reference coordinate axis of the gyro in the same benchmark,the attitude determination accuracy improves.
基金National Natural Science Foundation of China(No.61261029)
文摘The non-linearity problem of aircraft system could not be overcome by using the MEMS sensor only.In order to improve the accuracy of aerial vehicle attitude,an aircraft attitude estimation of the MEMS sensor based on modified particle filter is proposed.The aircraft attitude is optimized by the conjugate gradient method,and the drift error of gyroscope is reduced.Moreover,the particle weight is updated by the observed value to obtain an optimized state estimate.Finally,the conjugate gradient method and the modified particle filter are weightily combined to determine the optimal weighting factor.The attitude estimation is carried out with STM32 and MEMS sensor as the core to design system.The experimental results show that the static and dynamic attitude estimation performances of the aircraft are improved.The performances are well,the attitude data is relatively stable,and the tracking characteristics are better.Moreover,it has better robustness and stability.