A novel method applying simple, rapid, effective and inexpensive excitation-emission matrix (EEM) fluorescence spectroscopy coupled with second-order calibration method for simultaneous determination of ethoxyquin ...A novel method applying simple, rapid, effective and inexpensive excitation-emission matrix (EEM) fluorescence spectroscopy coupled with second-order calibration method for simultaneous determination of ethoxyquin (EQ) and tert-butylhydroquinone (TBHQ) contents in biological fluid samples was developed. After a simple data preprocessing that was to insert zeros below the first-order Rayleigh scattering, the second-order calibration method based on the alternating normalization-weighed error (ANWE) algorithm was used to deal with EEM data. Via the introduced "second-order advantage", the individual con- centrations of the analytes of interest could be obtained even in the presence of uncalibrated interferences. The experimental concentration ranges for the analytes were as follows: EQ, from 4.58 to 20.6 p.g mL-1 in plasma and from 6.87 to 20.6 gg mL-1 in urine; TBHQ, from 4.49 to 20.2 ~tg mL-1 in plasma and from 6.73 to 22.4 I.tg mL-l in urine. The recoveries from spiked bi- ological fluid samples were in the ranges of 92.8%-106.2% for EQ and 94.6%-107.2% for TBHQ. These results demonstrate that the three-dimensional EEM fluorescence with second-order calibration method is a powerful tool for obtaining both EQ and TBHQ quantitative results in plasma and urine samples, and could be applied to more complex matrices.展开更多
基金the National Natural Science Foundation of China (21175041)the National Basic Research Program(2012CB910602) for financial support
文摘A novel method applying simple, rapid, effective and inexpensive excitation-emission matrix (EEM) fluorescence spectroscopy coupled with second-order calibration method for simultaneous determination of ethoxyquin (EQ) and tert-butylhydroquinone (TBHQ) contents in biological fluid samples was developed. After a simple data preprocessing that was to insert zeros below the first-order Rayleigh scattering, the second-order calibration method based on the alternating normalization-weighed error (ANWE) algorithm was used to deal with EEM data. Via the introduced "second-order advantage", the individual con- centrations of the analytes of interest could be obtained even in the presence of uncalibrated interferences. The experimental concentration ranges for the analytes were as follows: EQ, from 4.58 to 20.6 p.g mL-1 in plasma and from 6.87 to 20.6 gg mL-1 in urine; TBHQ, from 4.49 to 20.2 ~tg mL-1 in plasma and from 6.73 to 22.4 I.tg mL-l in urine. The recoveries from spiked bi- ological fluid samples were in the ranges of 92.8%-106.2% for EQ and 94.6%-107.2% for TBHQ. These results demonstrate that the three-dimensional EEM fluorescence with second-order calibration method is a powerful tool for obtaining both EQ and TBHQ quantitative results in plasma and urine samples, and could be applied to more complex matrices.