Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared wi...Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.展开更多
Twenty-six sequences of grades of dryness/wetness and a combined sequence of indexes of winter temperature since A.D. 1471 in China were adopted as our data. The fluctuations of variability of precipitation and mean t...Twenty-six sequences of grades of dryness/wetness and a combined sequence of indexes of winter temperature since A.D. 1471 in China were adopted as our data. The fluctuations of variability of precipitation and mean temperature are statistically significant from analyses. It has been found that in middle latitudes of eastern China the distribution of the relation between mean temperature and interannual variability of precipitation in historical time forms a rather complex regional pattern, and the correlation coefficients are not unique in signs. But the negative correlations are dominant either in extent or in magnitude. The authors provide evidence that Little Ice Age was a time of more frequent extremes and support the idea that the climatic instability is above normal in cool periods.展开更多
基金Projects(51274083,51074062)supported by the National Natural Science Foundation of China
文摘Microstructure, precipitate and magnetic characteristic of fmal products with different normalizing cooling processes for Fe-3.2%Si low-temperature hot-rolled grain-oriented silicon steel were analyzed and compared with the hot-rolled plate by optical microscopy (OM), transmission electron microscopy (TEM), and energy dispersive spectrometry (EDS). The results show that, the surface microstructure is uniform, the proportion of recrystallization in matrix increases, and the banding textures are narrowed; the precipitates, whose quantity in normalized plate is more than that in hot-rolled plate greatly, are mainly A1N, MnS, composite precipitates (Cu,Mn)S and so on. Normalizing technology with a temperature of 1120 ℃, holding for 3 min, and a two-stage cooling is a most advantaged method to obtain oriented silicon steel with sharper Goss texture and higher magnetic properties, owing to the uniform surface microstructures and the obvious inhomogeneity of microstructures along the thickness. The normalizing technology with the two-stage cooling is the optimum process, which can generate more fine precipitates dispersed over the matrix, and be beneficial for finished products to get higher magnetic properties.
文摘Twenty-six sequences of grades of dryness/wetness and a combined sequence of indexes of winter temperature since A.D. 1471 in China were adopted as our data. The fluctuations of variability of precipitation and mean temperature are statistically significant from analyses. It has been found that in middle latitudes of eastern China the distribution of the relation between mean temperature and interannual variability of precipitation in historical time forms a rather complex regional pattern, and the correlation coefficients are not unique in signs. But the negative correlations are dominant either in extent or in magnitude. The authors provide evidence that Little Ice Age was a time of more frequent extremes and support the idea that the climatic instability is above normal in cool periods.