As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combin...As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combined effects of NAO and WP on East Asian(EA)temperature,the NAO and WP indices are divided into four phases from 1980−2021:the positive NAO and WP phase(NAO+/WP+),the negative NAO and WP phase(NAO−/WP−),the positive NAO and negative WP phase(NAO+/WP−),the negative NAO and positive WP phase(NAO−/WP+).In the phase of NAO+/WP+,the low geopotential height(GH)stays in north of EA at 50°−80°N;the surface air temperature anomaly(SATA)is 0.8−1℃lower than Southern Asian.In the phase of NAO−/WP−,the center of high temperature and GH locate in the northeast of EA;the cold air spreads to Southern Asia,causing the SATA decreases 1−1.5℃.In the phase of NAO+/WP−,the high GH belt is formed at 55°−80°N.Meanwhile,the center of high SATA locates in the north of Asia that increases 0.8−1.1℃.The cold airflow causes temperature dropping 0.5−1℃in the south of EA.The SATA improves 0.5−1.5℃in south of EA in the phase of NAO−/WP+.The belt of high GH is formed at 25°−50°N,and blocks the cold air which from Siberia.The NAO and WP generate two warped plate pressure structures in NH,and affect the temperature by different pressure configurations.NAO and WP form different GH,and GH acts to block and push airflow by affecting the air pressure,then causes the temperature to be different from the north and south of EA.Finally,the multiple linear regression result shows that NAO and WP are weakened by each other such as the phase of NAO+/WP+and NAO−/WP−.展开更多
Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this...Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this period.The composite result for 10 El Nino events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Nino event and persists until summer.In general,the anomaly is associated with three factors-namely,El Nino,the North Atlantic Oscillation(NAO),and a long-term trend,leading to an increase in local SST up to 0.4℃,0.3℃,and 0.35℃,respectively.A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño,as well as the local SST in the preceding winter,which may involve a long-term trend signal.In addition,the lead-lag correlation shows that the NAO leads the TNA SST by 2-3 months.By comparing two years with an opposite phase of the NAO in winter(i.e.,1992 and 2010),the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly.A negative phase of the NAO in winter will reinforce the El Nino forcing substantially,and vise versa.In other words,the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Nino.Therefore,the combined effects of El Nino and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.展开更多
A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anoma...A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropie wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.展开更多
A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive c...A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.展开更多
The most severe snowstorm and freezing-rain event in the past 50 years hit central and southern China in January 2008. One of the main reasons for the anomalous climate event was the occurrence of atmospheric circulat...The most severe snowstorm and freezing-rain event in the past 50 years hit central and southern China in January 2008. One of the main reasons for the anomalous climate event was the occurrence of atmospheric circulation anomalies over middle and high latitudes, particularly the persistent blocking that occurred over the Ural Mountains. Along with atmospheric anomalies, a strong La Nia event in the Pacific and warm sea surface temperature anomalies (SSTAs) in the North Atlantic were the most significant in the lower boundary. Since a brief analysis suggests that La Nia exerts no significant impact on the Urals, the key point of focus in this study is on the role of the warmer SSTAs in the North Atlantic. Based on an observational composite, North Atlantic SSTAs pattern when the height anomaly over the Urals is strongly positive is found similar to that in January 2008, but no significant SSTAs occurred elsewhere, such as the Pacific. Using an atmospheric general circulation model, ECHAM5, the impact of North Atlantic SSTAs on the extratropical atmosphere circulation in the event was investigated. The results show that the warm SSTAs strengthened the blocking high over the Urals, through anomalous transient eddies. The consistency between the study model and the observational composite indicates that the warm SSTAs in the North Atlantic were indeed an important factor in the formation of the snowstorm disaster of January 2008.展开更多
This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both...This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both mei-yu precipitation and mei-yu duration are characterized by significant decadal variability. Their decadal components are closely correlated with a triple mode of North Atlantic SSTA in the preceding winter. Regression analysis demonstrates that the wintertime North Atlantic SSTA may impose a delayed impact on East Asia Summer Monsoon (EASM) circulation and mei-yu on the decadal timescale. The persistency of SSTA plays an important role during this course. The triple SSTA mode can persist from winter until late spring. It is suggested that the springtime SSTA may excite a stationary wave-train propagating from west Eurasia to East Asia and exert an impact on mei-yu.展开更多
The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longter...The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longterm streamflow fluctuation of the Bela River (1895-2004) and Cierny Hron River (1931-2004) (central Slovakia). Homogeneity, long-term trends, as well as inter-annual dry and wet cycles were analyzed for the entire 1895-2004 time series of the Bela River and for the 1931-2004 time series of the Cierny Hron River. Inter-annual fluctuation of the wet and dry periods was identified using spectral analysis. The most significant period is that of 3.6 years. Other significant periods are those of 2.35 years, 13.5 years, and 21 years. Since these periods were found in other rivers of the world, as well as in SO, NAO, and AO phenomena, they can be considered as relating to the general regularity of the Earth.展开更多
The capabilities of two versions of the Global–Ocean–Atmosphere–Land–System model (i.e. GOALS–2 and GOALS–4) developed at State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), are v...The capabilities of two versions of the Global–Ocean–Atmosphere–Land–System model (i.e. GOALS–2 and GOALS–4) developed at State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), are validated in terms of the simulations of the winter North Atlantic Oscillation (NAO), which is currently the subject of considerable scientific interest. The results show that both GOALS–2 and GOALS–4 exhibit a realistic NAO signal associated with relatively reasonable spatial patterns of sea level pressure, surface air temperature, and precipitation. Generally speaking, the associated patterns of precipitation in GOALSs match better with the observation in comparison with the case of surface temperature. For the imprint of NAO on the ocean, or perhaps a coupling between the two fluids, the associated tripole patterns of the North Atlantic SST anomaly are presented distinctly in GOALS–2, for GOALS-4 however, this is not the case. Spatially, the models’ main deficiencies appear to be that the simulated Icelandic lows shift northward apparently, which in turn result in the blemish of GOALSs in reproducing the accompanied surface wind anomalies. For the interannual and even longer time scale variations of DJF sea level pressure (SLP) over the North Atlantic region, GOALSs reproduce the center with the strongest variability rationally, but the intensities are far weaker than the observation. Key words North Atlantic Oscillation (NAO) - Model evaluation - GOALS model This study was jointly supported by the National key Project (Grant No. 96-908-02-03), the Excel-lent National Key Laboratory Research Project (Grant NO. 49823002), Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua” for “ Validation of Coupled Climate Models”, and IAP innova-tion fund (No.8-1204).The authors gratefully acknowledge Dv. Jin Xuingze, Mr. Liu Xiying in IAP /LASG, and Dr. Gong Daoyi in Geophysical Department of Peking University for providing ardent help.展开更多
This study investigates the relationship between the summer North Atlantic Oscillation (SNAO) and the simultaneous Northern Hemisphere (NH) land surface air temperature (SAT) by using the Climate Research Unit ...This study investigates the relationship between the summer North Atlantic Oscillation (SNAO) and the simultaneous Northern Hemisphere (NH) land surface air temperature (SAT) by using the Climate Research Unit (CRU) data. The results show that the SNAO is related to NH land SAT, but this linkage has varied on decadal timescales over the last 52 years, with a strong connection appearing after the late 1970s, but a weak connection before. The mechanism governing the relationship between the SNAO and NH land SAT is discussed based on the NCEP/NCAR reanalysis data. The results indicate that such a variable relationship may result from changes of the SNAO mode around the late 1970s. The SNAO pattern was centered mainly over the North Atlantic before the late 1970s, and thus had a weak influence on the NH land SAT. But after the late 1970s, the SNAO pattern shifted eastward and its southern center was enhanced in magnitude and extent, which transported the SNAO signal to the North Atlantic surrounding continents and even to central East Asia via an upper level wave train along the Asian jet.展开更多
In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formation...In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.展开更多
This paper reveals that the summer North Atlantic Oscillation (SNAO) is closely related to the extreme hot event (EHE) variability in China during the period of 1979 2009, with a positive-phase (negative-phase) SNAO c...This paper reveals that the summer North Atlantic Oscillation (SNAO) is closely related to the extreme hot event (EHE) variability in China during the period of 1979 2009, with a positive-phase (negative-phase) SNAO corresponding to less (more) EHEs in northern China. The summer circulation anomalies associated with the SNAO give further confirmation of the above relationship. In a positive-phase (negative-phase) SNAO year, there is an anomalous cyclone (anticyclone) over central East Asia, which can increase (decrease) the total cloud cover over this region. Such changes of the total cloud cover can then decrease (increase) the solar radiation reaching the surface, which is consequently unfavorable (favorable) to the formation of EHEs over northern China.展开更多
The 26th Chinese COMRA (China Ocean Mineral Resources Research & Development Association) cruise was an important cruise. The Carlsberg Ridge (CR) of the Northwest Indian Ocean and the North Atlantic Ridge (NAR...The 26th Chinese COMRA (China Ocean Mineral Resources Research & Development Association) cruise was an important cruise. The Carlsberg Ridge (CR) of the Northwest Indian Ocean and the North Atlantic Ridge (NAR), in which less investigation has been carried out for hydrothermal activities, were investigated and studied during the first two legs of the 26th COMRA cruise. During the first leg, we found one hydrother- mal activity field located in the CR at 3.5^-3.8~ N on the Northwest Indian Ocean Ridge (NWIR), and sampled seafloor polymetallic sulfide deposits where only abnormalities were found before. During the second leg, we found a new hydrothermal anomaly field located in the NAR at 4^-7~N. The discovery of two hydrother- real and anomaly fields filled in the gap of hydrothermal investigation and study in the corresponding re- ~ions for China.展开更多
Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this p...Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift. The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951 1975, the variability of the MBS SST is quite weak, but in 1978 2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.展开更多
In this study, using the ECMWF reanalysis data, the possible linkage between the Pacific-North American teleconnection pattern (PNA) and the North Atlantic Oscillation (NAO) during boreal winter (December- Febru...In this study, using the ECMWF reanalysis data, the possible linkage between the Pacific-North American teleconnection pattern (PNA) and the North Atlantic Oscillation (NAO) during boreal winter (December- February) is investigated. The PNA and the NAO pattern are obtained by performing Rotated Empirical Orthogonal Function (REOF) analysis on an anomalous daily mean 300-hPa geopotential height field. The composite daily NAO indices show that the NAO indices are prone to be negative (positive) when the contemporary PNA indices are extremely positive (negative). The correlation coefficients between the daily PNA and NAO indices also confirm that, indeed, there is a significant anti-correlation between the PNA and NAO indices. The correlation peaks at a lag of 0 days (meaning contemporary correlation), and its value is 0.202. Analyses of a newly defined Rossby wave breaking index and diagnostics of the stream function tendency equation indicate that the anti-correlation between PNA and NAO may be caused by the anomalous Rossby wave breaking events associated with the PNA pattern.展开更多
This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive cor...This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive correlation exists between the preceding summer NAO and the early autumn RCC on the interannual timescale. In order to understand the physical mechanism between them, the role of ocean was investigated. It was found that the strong summer NAO can induce a tripole sea surface temperature anomaly(SSTA) in the North Atlantic; this SSTA pattern can persist until early autumn. The diagnostic analysis showed that the tripole SSTA pattern excites a downstream Atlantic-Eurasian(AEA) teleconnection, which contributes to an increase in RCC. The circulation anomalies related to SSTA caused by the weak NAO are opposite, so the RCC is less than normal. The results imply that the preceding summer NAO may be regarded as a forecast factor for the early autumn RCC.展开更多
The sea-ice concentration in the Northern Hemisphere, 500 hPa height, sea-level pressure and 1000-500 hPa thickness of monthly mean data are examined for the period 1953-1989, with emphasis on the winter season.Relati...The sea-ice concentration in the Northern Hemisphere, 500 hPa height, sea-level pressure and 1000-500 hPa thickness of monthly mean data are examined for the period 1953-1989, with emphasis on the winter season.Relationships between large-scale patterns of atmospheric variability and sea-ice variability are investigated, making use of the correlation method. The analysis is conducted for the Atlantic sectors. In agreement with earlier studies based upon monthly mean data on sea-ice concentration, the strongest sea-ice pattern is composed of a dipole with opposing centers of action in the Davis Straits / Labrador Sea region and the Greenland and Barents Seas. Its temporal variability is strongly coupled to the atmospheric North Atlantic Oscillation (NAO). The relationship between the two patterns is strongest with the atmosphere leading the ocean. The polarity of the NAO is associated with Greenland blocking episodes, during which the influence of the atmosphere is strong enough to temporarily halt the climatological mean advance of the ice edge in some regions and substantially accelerate it in others.The relationships between the fields are indicative of local forcing of sea-ice in most regions, with wind stress and thermodynamic fluxes at the air-sea interface both contributing.展开更多
Model studies point to enhanced warming and to increased freshwater ?uxes to high northern latitudes in response to global warming. In order to address possible feedbacks in the ice-ocean system in response to such ...Model studies point to enhanced warming and to increased freshwater ?uxes to high northern latitudes in response to global warming. In order to address possible feedbacks in the ice-ocean system in response to such changes, the combined e?ect of increased freshwater input to the Arctic Ocean and Arctic warming—the latter manifested as a gradual melting of the Arctic sea ice—is examined using a 3-D isopycnic coordinate ocean general circulation model. A suite of three idealized experiments is carried out: one control integration, one integration with a doubling of the modern Arctic river runo?, and a third more extreme case, where the river runo? is ?ve times the modern value. In the two freshwater cases, the sea ice thickness is reduced by 1.5–2 m in the central Arctic Ocean over a 50-year period. The modelled ocean response is qualitatively the same for both perturbation experiments: freshwater propagates into the Atlantic Ocean and the Nordic Seas, leading to an initial weakening of the North Atlantic Drift. Furthermore, changes in the geostrophic currents in the central Arctic and melting of the Arctic sea ice lead to an intensi?ed Beaufort Gyre, which in turn increases the southward volume transport through the Canadian Archipelago. To compensate for this southward transport of mass, more warm and saline Atlantic water is carried northward with the North Atlantic Drift. It is found that the increased transport of salt into the northern North Atlantic and the Nordic Seas tends to counteract the impact of the increased freshwater originating from the Arctic, leading to a stabilization of the North Atlantic Drift.展开更多
In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Resu...In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.展开更多
Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedba...Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.展开更多
Negative-phase North Atlantic Oscillation(NAO) events are generally stronger than positive-phase ones, i.e., there is a phase-strength asymmetry of the NAO. In this work, we explore this asymmetry of the NAO using t...Negative-phase North Atlantic Oscillation(NAO) events are generally stronger than positive-phase ones, i.e., there is a phase-strength asymmetry of the NAO. In this work, we explore this asymmetry of the NAO using the conditional nonlinear optimal perturbation(CNOP) method with a three-level global quasi-geostrophic spectral model. It is shown that, with winter climatological flow forcing, the CNOP method identifies the perturbations triggering the strongest NAO event under a given initial constraint. Meanwhile, the phase-strength asymmetry characteristics of the NAO can be revealed. By comparing with linear results, we find that the process of perturbation self-interaction promotes the onset of negative NAO events, which is much stronger than during positive NAO onset. Results are obtained separately using the climatological and zonal-mean flows in boreal winter(December–February) 1979–2006 as the initial basic state. We conclude, based on the fact that NAO onset is a nonlinear initial-value problem, that phase-strength asymmetry is an intrinsic characteristic of the NAO.展开更多
基金The National Key Research and Development Program of China under contract No.2022YFE0140500the National Natural Science Foundation of China under contract Nos 41821004 and 42130406+2 种基金the National Natural Science Foundation of China-Shandong Joint Fund under contract No.U1906215the Open Fund of Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences under contract No.KLOCW2003the Project of Doctoral Found of Qingdao University of Science and Technology under contract No.210010022746.
文摘As important atmospheric circulation patterns in Northern Hemisphere(NH),the North Atlantic Oscillation(NAO)and the Western Pacific teleconnection(WP)affect the winter climate in Eurasia.In order to explore the combined effects of NAO and WP on East Asian(EA)temperature,the NAO and WP indices are divided into four phases from 1980−2021:the positive NAO and WP phase(NAO+/WP+),the negative NAO and WP phase(NAO−/WP−),the positive NAO and negative WP phase(NAO+/WP−),the negative NAO and positive WP phase(NAO−/WP+).In the phase of NAO+/WP+,the low geopotential height(GH)stays in north of EA at 50°−80°N;the surface air temperature anomaly(SATA)is 0.8−1℃lower than Southern Asian.In the phase of NAO−/WP−,the center of high temperature and GH locate in the northeast of EA;the cold air spreads to Southern Asia,causing the SATA decreases 1−1.5℃.In the phase of NAO+/WP−,the high GH belt is formed at 55°−80°N.Meanwhile,the center of high SATA locates in the north of Asia that increases 0.8−1.1℃.The cold airflow causes temperature dropping 0.5−1℃in the south of EA.The SATA improves 0.5−1.5℃in south of EA in the phase of NAO−/WP+.The belt of high GH is formed at 25°−50°N,and blocks the cold air which from Siberia.The NAO and WP generate two warped plate pressure structures in NH,and affect the temperature by different pressure configurations.NAO and WP form different GH,and GH acts to block and push airflow by affecting the air pressure,then causes the temperature to be different from the north and south of EA.Finally,the multiple linear regression result shows that NAO and WP are weakened by each other such as the phase of NAO+/WP+and NAO−/WP−.
基金supported by the National Natural Science Founda-tion of China[grant numbers 41630530 and 41861144015]the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”.
文摘Based on reanalysis data from 1979 to 2016,this study focuses on the sea surface temperature(SST)anomaly of the tropical North Atlantic(TNA)in El Nino decaying years.The TNA SST exhibits a clear warm trend during this period.The composite result for 10 El Nino events shows that the TNA SST anomaly reaches its maximum in spring after the peak of an El Nino event and persists until summer.In general,the anomaly is associated with three factors-namely,El Nino,the North Atlantic Oscillation(NAO),and a long-term trend,leading to an increase in local SST up to 0.4℃,0.3℃,and 0.35℃,respectively.A comparison between 1983 and 2005 indicates that the TNA SST in spring is affected by El Niño,as well as the local SST in the preceding winter,which may involve a long-term trend signal.In addition,the lead-lag correlation shows that the NAO leads the TNA SST by 2-3 months.By comparing two years with an opposite phase of the NAO in winter(i.e.,1992 and 2010),the authors further demonstrate that the NAO is another important factor in regulating the TNA SST anomaly.A negative phase of the NAO in winter will reinforce the El Nino forcing substantially,and vise versa.In other words,the TNA SST anomaly in the decaying years is more evident if the NAO is negative with El Nino.Therefore,the combined effects of El Nino and the NAO must be considered in order to fully understand the TNA SST variability along with a long-term trend.
基金jointly supported by the National Basic Research Program of China (Grant Nos. 2010CB950404, 2013CB430203, 2010CB950501 and 2012CB955901)the National Natural Science Foundation of China (Grant No. 41205058)+1 种基金the China Postdoctoral Science Foundation (Grant No. 2012M510634)the National Science and Technology Support Program of China (Grant No. 2009BAC51B05)
文摘A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropie wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.
基金supported jointly by the NOAA Arctic Research,CAS Project ZKCX2-SW-210the National Natural Science Foundation of China(Grant No.40275025)
文摘A new North Atlantic Oscillation (NAO) index, the NAOI, is defined as the differences of normalized sea level pressures regionally zonal-averaged over a broad range of longitudes 80°W-30°E. A comprehensive comparison of six NAO indices indicates that the new NAOI provides a more faithful representation of the spatial-temporal variability associated with the NAO on all timescales. A very high signal-to-noise ratio for the NAOI exists for all seasons, and the life cycle represented by the NAOI describes well the seasonal migration for action centers of the NAO. The NAOI captures a larger fraction of the variance of sea level pressure over the North Atlantic sector (20°-90°N, 80°W-30°E), on average 10% more than any other NAO index. There are quite different relationships between the NAOI and surface air temperature during winter and summer. A novel feature, however, is that the NAOI is significantly negative correlated with surface air temperature over the North Atlantic Ocean between 10°-25°N and 70°-30°W, whether in winter or summer. From 1873, the NAOI exhibits strong interannual and decadal variability. Its interannual variability of the twelve calendar months is obviously phase-locked with the seasonal cycle. Moreover, the annual NAOI exhibits a clearer decadal variability in amplitude than the winter NAOI. An upward trend is found in the annual NAOI between the 1870s and 1910s, while the other winter NAO indices fail to show this tendency. The annual NAOI exhibits a strongly positive epoch of 50 years between 1896 and 1950. After 1950, the variability of the annual NAOI is very similar to that of the winter NAO indices.
基金supported by the National Key Basic Research Program of China (Grant No.2009CB421401)the Special Program of China Meteorological Administration (Grant No. GYHY200906017)contributing to the Norwegian Research Councilproject East Asian DecCen (Grant No. 193690)
文摘The most severe snowstorm and freezing-rain event in the past 50 years hit central and southern China in January 2008. One of the main reasons for the anomalous climate event was the occurrence of atmospheric circulation anomalies over middle and high latitudes, particularly the persistent blocking that occurred over the Ural Mountains. Along with atmospheric anomalies, a strong La Nia event in the Pacific and warm sea surface temperature anomalies (SSTAs) in the North Atlantic were the most significant in the lower boundary. Since a brief analysis suggests that La Nia exerts no significant impact on the Urals, the key point of focus in this study is on the role of the warmer SSTAs in the North Atlantic. Based on an observational composite, North Atlantic SSTAs pattern when the height anomaly over the Urals is strongly positive is found similar to that in January 2008, but no significant SSTAs occurred elsewhere, such as the Pacific. Using an atmospheric general circulation model, ECHAM5, the impact of North Atlantic SSTAs on the extratropical atmosphere circulation in the event was investigated. The results show that the warm SSTAs strengthened the blocking high over the Urals, through anomalous transient eddies. The consistency between the study model and the observational composite indicates that the warm SSTAs in the North Atlantic were indeed an important factor in the formation of the snowstorm disaster of January 2008.
基金supported by the research grant KZCX3-SW-226 of the Chinese Academy of Sciencesthe National Basic Research Program of China(973 Program, Grant No. 2006CB403600)CityU Strategic Research Grant 7002231
文摘This paper investigates the relationship between mei-yu and North Atlantic sea surface temperature anomalies (SSTA). Results show that they are significantly associated with each other on the decadal timescale. Both mei-yu precipitation and mei-yu duration are characterized by significant decadal variability. Their decadal components are closely correlated with a triple mode of North Atlantic SSTA in the preceding winter. Regression analysis demonstrates that the wintertime North Atlantic SSTA may impose a delayed impact on East Asia Summer Monsoon (EASM) circulation and mei-yu on the decadal timescale. The persistency of SSTA plays an important role during this course. The triple SSTA mode can persist from winter until late spring. It is suggested that the springtime SSTA may excite a stationary wave-train propagating from west Eurasia to East Asia and exert an impact on mei-yu.
文摘The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longterm streamflow fluctuation of the Bela River (1895-2004) and Cierny Hron River (1931-2004) (central Slovakia). Homogeneity, long-term trends, as well as inter-annual dry and wet cycles were analyzed for the entire 1895-2004 time series of the Bela River and for the 1931-2004 time series of the Cierny Hron River. Inter-annual fluctuation of the wet and dry periods was identified using spectral analysis. The most significant period is that of 3.6 years. Other significant periods are those of 2.35 years, 13.5 years, and 21 years. Since these periods were found in other rivers of the world, as well as in SO, NAO, and AO phenomena, they can be considered as relating to the general regularity of the Earth.
基金This study was jointly supported by the National key Project !(Grant No. 96-908-02-03) the Excellent National Key Laboratory
文摘The capabilities of two versions of the Global–Ocean–Atmosphere–Land–System model (i.e. GOALS–2 and GOALS–4) developed at State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), are validated in terms of the simulations of the winter North Atlantic Oscillation (NAO), which is currently the subject of considerable scientific interest. The results show that both GOALS–2 and GOALS–4 exhibit a realistic NAO signal associated with relatively reasonable spatial patterns of sea level pressure, surface air temperature, and precipitation. Generally speaking, the associated patterns of precipitation in GOALSs match better with the observation in comparison with the case of surface temperature. For the imprint of NAO on the ocean, or perhaps a coupling between the two fluids, the associated tripole patterns of the North Atlantic SST anomaly are presented distinctly in GOALS–2, for GOALS-4 however, this is not the case. Spatially, the models’ main deficiencies appear to be that the simulated Icelandic lows shift northward apparently, which in turn result in the blemish of GOALSs in reproducing the accompanied surface wind anomalies. For the interannual and even longer time scale variations of DJF sea level pressure (SLP) over the North Atlantic region, GOALSs reproduce the center with the strongest variability rationally, but the intensities are far weaker than the observation. Key words North Atlantic Oscillation (NAO) - Model evaluation - GOALS model This study was jointly supported by the National key Project (Grant No. 96-908-02-03), the Excel-lent National Key Laboratory Research Project (Grant NO. 49823002), Chinese Academy of Sciences (CAS) under grant “ Bai Ren Ji Hua” for “ Validation of Coupled Climate Models”, and IAP innova-tion fund (No.8-1204).The authors gratefully acknowledge Dv. Jin Xuingze, Mr. Liu Xiying in IAP /LASG, and Dr. Gong Daoyi in Geophysical Department of Peking University for providing ardent help.
基金supported by Chinese Academy of Sciences(Grant Nos.KZCX2-YW-Q1-02 and KZCX2-YW-217)the National Natural Science Foundation of China(Grant Nos.40905041,40631005,and 90711004)the IAP innovation program(Grant No.IAP07412)
文摘This study investigates the relationship between the summer North Atlantic Oscillation (SNAO) and the simultaneous Northern Hemisphere (NH) land surface air temperature (SAT) by using the Climate Research Unit (CRU) data. The results show that the SNAO is related to NH land SAT, but this linkage has varied on decadal timescales over the last 52 years, with a strong connection appearing after the late 1970s, but a weak connection before. The mechanism governing the relationship between the SNAO and NH land SAT is discussed based on the NCEP/NCAR reanalysis data. The results indicate that such a variable relationship may result from changes of the SNAO mode around the late 1970s. The SNAO pattern was centered mainly over the North Atlantic before the late 1970s, and thus had a weak influence on the NH land SAT. But after the late 1970s, the SNAO pattern shifted eastward and its southern center was enhanced in magnitude and extent, which transported the SNAO signal to the North Atlantic surrounding continents and even to central East Asia via an upper level wave train along the Asian jet.
文摘In this study, the temporal structure of the variation of North Atlantic Oscillation (NAO) and its impact on regional climate variability are analyzed using various datasets. The results show that blocking formations in the Atlantic region are sensitive to the phase of the NAO. Sixty-seven percent more winter blocking days are observed during the negative phase compared to the positive phase of the NAO. The average length of blocking during the negative phase is about 11 days, which is nearly twice as long as the 6-day length observed during the positive phase of the NAO. The NAO-related differences in blocking frequency and persistence are associated with changes in the distribution of the surface air temperature anomaly, which, to a large extent, is determined by the phase of the NAO. The distribution of regional cloud amount is also sensitive to the phase of the NAO. For the negative phase, the cloud amounts are significant, positive anomalies in the convective zone in the Tropics and much less cloudiness in the mid latitudes. But for the positive phase of the NAO, the cloud amount is much higher in the mid-latitude storm track region. In the whole Atlantic region, the cloud amount shows a decrease with the increase of surface air temperature. These results suggest that there may be a negative feedback between the cloud amount and the surface air t.emperature in the Atlantic region.
基金supported by the National Natural Science Foundation of China (Grant No.40905041)the National Basic Research Program of China (Grant No. 2012CB955401)the "Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences (Grant No. XDA05090306)
文摘This paper reveals that the summer North Atlantic Oscillation (SNAO) is closely related to the extreme hot event (EHE) variability in China during the period of 1979 2009, with a positive-phase (negative-phase) SNAO corresponding to less (more) EHEs in northern China. The summer circulation anomalies associated with the SNAO give further confirmation of the above relationship. In a positive-phase (negative-phase) SNAO year, there is an anomalous cyclone (anticyclone) over central East Asia, which can increase (decrease) the total cloud cover over this region. Such changes of the total cloud cover can then decrease (increase) the solar radiation reaching the surface, which is consequently unfavorable (favorable) to the formation of EHEs over northern China.
基金the National Basic Research Program of China under contract No. 2012CB417305China Ocean Mineral Resources Research & Development Association Project under contract No. DY125-11Endowment Fund of International Seabed Authority (the International Cooperative Study on Hydrothermal System at Ultraslow Spreading SWIR)
文摘The 26th Chinese COMRA (China Ocean Mineral Resources Research & Development Association) cruise was an important cruise. The Carlsberg Ridge (CR) of the Northwest Indian Ocean and the North Atlantic Ridge (NAR), in which less investigation has been carried out for hydrothermal activities, were investigated and studied during the first two legs of the 26th COMRA cruise. During the first leg, we found one hydrother- mal activity field located in the CR at 3.5^-3.8~ N on the Northwest Indian Ocean Ridge (NWIR), and sampled seafloor polymetallic sulfide deposits where only abnormalities were found before. During the second leg, we found a new hydrothermal anomaly field located in the NAR at 4^-7~N. The discovery of two hydrother- real and anomaly fields filled in the gap of hydrothermal investigation and study in the corresponding re- ~ions for China.
基金supported by National Basic Research Program of China(Grant No2009CB421406)the Chinese Academy of Sciences(Grant NosKZCX2-YW-Q1-02 and KZCX2-YW-BR-14)the National Natural Science Foundation of China(Grant Nos40631005 and 90711004)
文摘Recent observational study has shown that the southern center of the summer North Atlantic Oscillation (SNAO) was located farther eastward after the late 1970s compared to before. In this study, the cause for this phenomenon is explored. The result shows that the eastward shift of the SNAO southern center after the late 1970s is related to the variability of the Mediterranean-Black Sea (MBS) SST. A warm MBS SST can heat and moisten its overlying atmosphere, consequently producing a negative sea level pressure (SLP) departure over the MBS region. Because the MBS SST is negatively correlated with the SNAO, the negative SLP departure can enhance the eastern part of the negative-phase of the SNAO southern center, consequently producing an eastward SNAO southern center shift. Similarly, a cold MBS SST produces an eastward positive-phase SNAO southern center shift. The reason for why the MBS SST has an impact on the SNAO after the late 1970s but why it is not the case beforehand is also discussed. It is found that this instable relationship is likely to be attributed to the change of the variability of the MBS SST on the decadal time-scale. In 1951 1975, the variability of the MBS SST is quite weak, but in 1978 2002, it becomes more active. The active SST can enhance the interaction between the sea and its overlying atmosphere, thus strengthening the connection between the MBS SST and the SNAO after the late 1970s. The above observational analysis results are further confirmed by sensitivity experiments.
文摘In this study, using the ECMWF reanalysis data, the possible linkage between the Pacific-North American teleconnection pattern (PNA) and the North Atlantic Oscillation (NAO) during boreal winter (December- February) is investigated. The PNA and the NAO pattern are obtained by performing Rotated Empirical Orthogonal Function (REOF) analysis on an anomalous daily mean 300-hPa geopotential height field. The composite daily NAO indices show that the NAO indices are prone to be negative (positive) when the contemporary PNA indices are extremely positive (negative). The correlation coefficients between the daily PNA and NAO indices also confirm that, indeed, there is a significant anti-correlation between the PNA and NAO indices. The correlation peaks at a lag of 0 days (meaning contemporary correlation), and its value is 0.202. Analyses of a newly defined Rossby wave breaking index and diagnostics of the stream function tendency equation indicate that the anti-correlation between PNA and NAO may be caused by the anomalous Rossby wave breaking events associated with the PNA pattern.
基金supported jointly by the National Basic Research Program of China(973 program,Grant No.2013CB340203)the National Natural Science Foundation of China(NSFC)(Grant Nos.41290255 and 41205046)
文摘This study examined the impact of the preceding boreal summer(June–August) North Atlantic Oscillation(NAO) on early autumn(September) rainfall over Central China(RCC). The results show that a significant positive correlation exists between the preceding summer NAO and the early autumn RCC on the interannual timescale. In order to understand the physical mechanism between them, the role of ocean was investigated. It was found that the strong summer NAO can induce a tripole sea surface temperature anomaly(SSTA) in the North Atlantic; this SSTA pattern can persist until early autumn. The diagnostic analysis showed that the tripole SSTA pattern excites a downstream Atlantic-Eurasian(AEA) teleconnection, which contributes to an increase in RCC. The circulation anomalies related to SSTA caused by the weak NAO are opposite, so the RCC is less than normal. The results imply that the preceding summer NAO may be regarded as a forecast factor for the early autumn RCC.
文摘The sea-ice concentration in the Northern Hemisphere, 500 hPa height, sea-level pressure and 1000-500 hPa thickness of monthly mean data are examined for the period 1953-1989, with emphasis on the winter season.Relationships between large-scale patterns of atmospheric variability and sea-ice variability are investigated, making use of the correlation method. The analysis is conducted for the Atlantic sectors. In agreement with earlier studies based upon monthly mean data on sea-ice concentration, the strongest sea-ice pattern is composed of a dipole with opposing centers of action in the Davis Straits / Labrador Sea region and the Greenland and Barents Seas. Its temporal variability is strongly coupled to the atmospheric North Atlantic Oscillation (NAO). The relationship between the two patterns is strongest with the atmosphere leading the ocean. The polarity of the NAO is associated with Greenland blocking episodes, during which the influence of the atmosphere is strong enough to temporarily halt the climatological mean advance of the ice edge in some regions and substantially accelerate it in others.The relationships between the fields are indicative of local forcing of sea-ice in most regions, with wind stress and thermodynamic fluxes at the air-sea interface both contributing.
文摘Model studies point to enhanced warming and to increased freshwater ?uxes to high northern latitudes in response to global warming. In order to address possible feedbacks in the ice-ocean system in response to such changes, the combined e?ect of increased freshwater input to the Arctic Ocean and Arctic warming—the latter manifested as a gradual melting of the Arctic sea ice—is examined using a 3-D isopycnic coordinate ocean general circulation model. A suite of three idealized experiments is carried out: one control integration, one integration with a doubling of the modern Arctic river runo?, and a third more extreme case, where the river runo? is ?ve times the modern value. In the two freshwater cases, the sea ice thickness is reduced by 1.5–2 m in the central Arctic Ocean over a 50-year period. The modelled ocean response is qualitatively the same for both perturbation experiments: freshwater propagates into the Atlantic Ocean and the Nordic Seas, leading to an initial weakening of the North Atlantic Drift. Furthermore, changes in the geostrophic currents in the central Arctic and melting of the Arctic sea ice lead to an intensi?ed Beaufort Gyre, which in turn increases the southward volume transport through the Canadian Archipelago. To compensate for this southward transport of mass, more warm and saline Atlantic water is carried northward with the North Atlantic Drift. It is found that the increased transport of salt into the northern North Atlantic and the Nordic Seas tends to counteract the impact of the increased freshwater originating from the Arctic, leading to a stabilization of the North Atlantic Drift.
基金supported by the Special Fund for Public Welfare Industry (Meteorology) (GYHY201306026)the National Natural Science Foundation of China (41275078)the National Basic Research Program of China (2009CB421407)
文摘In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.
基金supported by a National Natural Science Foundation of China (NSFC) Innovation Team Project (Grant No. 40921004)the Fundamental Research Funds for Central Universities (Grant No. 0900841261005)
文摘Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.
基金supported by the National Key Basic Research and Development (973) Project (Grant No. 2012CB417200)the National Natural Science Foundation of China (Grant No. 41230420)
文摘Negative-phase North Atlantic Oscillation(NAO) events are generally stronger than positive-phase ones, i.e., there is a phase-strength asymmetry of the NAO. In this work, we explore this asymmetry of the NAO using the conditional nonlinear optimal perturbation(CNOP) method with a three-level global quasi-geostrophic spectral model. It is shown that, with winter climatological flow forcing, the CNOP method identifies the perturbations triggering the strongest NAO event under a given initial constraint. Meanwhile, the phase-strength asymmetry characteristics of the NAO can be revealed. By comparing with linear results, we find that the process of perturbation self-interaction promotes the onset of negative NAO events, which is much stronger than during positive NAO onset. Results are obtained separately using the climatological and zonal-mean flows in boreal winter(December–February) 1979–2006 as the initial basic state. We conclude, based on the fact that NAO onset is a nonlinear initial-value problem, that phase-strength asymmetry is an intrinsic characteristic of the NAO.