The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o...The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.展开更多
The existence and subduction of the eastern Mianl oceanic basin in the south Qinling belt are keys to understand the Qinling orogen. Based on geological mapping, several volcanic slices have been identified in Tumen, ...The existence and subduction of the eastern Mianl oceanic basin in the south Qinling belt are keys to understand the Qinling orogen. Based on geological mapping, several volcanic slices have been identified in Tumen, Zhoujiawan, Xiaofu and Yuantan areas, which distribute in the northern margin of the Dahong Mountains (DHM), and thrust into the Sanli-gang-Sanyang fault. These slices consist mainly of diabases, basaltic-andesitic lavas, pyroclastic rocks and a minor tuff. The geochemistry of the basalts, andesites,and diabases is characterized by depleting in Nb and Ta, enriching in Th and LILE (e.g.K, Rb, Ba), and undifferentiating in HFSE. These geochemical characteristics suggest that the original magma of these rocks was derived from a mantle wedge above a subduction zone, and formed in an island-arc setting in Carboniferous-early Triassic. Comparing with the ophiolites and island-arc volcanic rocks in Mianxian-Leyang area to the west, it is reasonable to consider that there had been an oceanic basin connecting with the Mianle ancient ocean to the westward, distributing along the south edge of the Tongbai-Dabie block. In view of the ophiolite in Huashan area and these island-arc volcanic rocks along the north of the Dahong Mountains, it is suggested that there had been a plate tectonic evolutionary history with oceanic basin rifting and subduction in this region.展开更多
Located in the southern Qinling Mountains of central China, the Guanjiagou Formation has been a con-troversial issue with regard to its depositional age and tec-tonic implications. Being comprised of an approximately ...Located in the southern Qinling Mountains of central China, the Guanjiagou Formation has been a con-troversial issue with regard to its depositional age and tec-tonic implications. Being comprised of an approximately 2050 m thick succession of texturally and compositionally immature, presumed marine turbiditic sandstones and con-glomerate, the Guanjiagou Formation consists of an overall prograding- and coarsening-upward megasequence. Al-though bounded by faults on both its northern and southern margins, it is weakly metamorphosed and deformed. To the north is the Devonian Sanhekou Group and to the south is the Neoproterozoic Hengdan Group. The lower portion of the sequence contains granitic and volcanic clasts (Guanjiagou conglomerate). The feldspars from these clasts were dated using the 40Ar/39Ar method. Two cooling ages of 219.690.49 and 216.460.59 Ma, for K-feldspar from a granitic clast and plagioclase from a volcanic clast, respectively, were obtained. These ages are identical to the time of regional igneous ac-tivities (ca. 240—220 Ma) and are interpreted as the prod-ucts of magmatism associated with collision in the Qinling orogenic belt in the Early Mesozoic, suggesting that the Guanjiagou Formation was deposited in the Norian of the Late Triassic, ca. 220 Ma. Therefore, 40Ar/39Ar and sedimen-tary analyses suggest that the Guanjiagou Formation con-tains sediments that may have filled in a remnant ocean ba-sin, which might be part of the Anyemaqen-Mianle ocean, or Tethys on the southern side of Central Orogenic Belt in China during the Late Paleozoic to Early Mesozoic.展开更多
基金supported by the funding of the Key Laboratory of Eco-hydrology Open FundChinese Academy of Sciences and Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-328
文摘The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.
基金This work was supported by the National Natu-ral Science Foundation of China (Grant Nos. 49732080, 40003003,40234041).
文摘The existence and subduction of the eastern Mianl oceanic basin in the south Qinling belt are keys to understand the Qinling orogen. Based on geological mapping, several volcanic slices have been identified in Tumen, Zhoujiawan, Xiaofu and Yuantan areas, which distribute in the northern margin of the Dahong Mountains (DHM), and thrust into the Sanli-gang-Sanyang fault. These slices consist mainly of diabases, basaltic-andesitic lavas, pyroclastic rocks and a minor tuff. The geochemistry of the basalts, andesites,and diabases is characterized by depleting in Nb and Ta, enriching in Th and LILE (e.g.K, Rb, Ba), and undifferentiating in HFSE. These geochemical characteristics suggest that the original magma of these rocks was derived from a mantle wedge above a subduction zone, and formed in an island-arc setting in Carboniferous-early Triassic. Comparing with the ophiolites and island-arc volcanic rocks in Mianxian-Leyang area to the west, it is reasonable to consider that there had been an oceanic basin connecting with the Mianle ancient ocean to the westward, distributing along the south edge of the Tongbai-Dabie block. In view of the ophiolite in Huashan area and these island-arc volcanic rocks along the north of the Dahong Mountains, it is suggested that there had been a plate tectonic evolutionary history with oceanic basin rifting and subduction in this region.
文摘Located in the southern Qinling Mountains of central China, the Guanjiagou Formation has been a con-troversial issue with regard to its depositional age and tec-tonic implications. Being comprised of an approximately 2050 m thick succession of texturally and compositionally immature, presumed marine turbiditic sandstones and con-glomerate, the Guanjiagou Formation consists of an overall prograding- and coarsening-upward megasequence. Al-though bounded by faults on both its northern and southern margins, it is weakly metamorphosed and deformed. To the north is the Devonian Sanhekou Group and to the south is the Neoproterozoic Hengdan Group. The lower portion of the sequence contains granitic and volcanic clasts (Guanjiagou conglomerate). The feldspars from these clasts were dated using the 40Ar/39Ar method. Two cooling ages of 219.690.49 and 216.460.59 Ma, for K-feldspar from a granitic clast and plagioclase from a volcanic clast, respectively, were obtained. These ages are identical to the time of regional igneous ac-tivities (ca. 240—220 Ma) and are interpreted as the prod-ucts of magmatism associated with collision in the Qinling orogenic belt in the Early Mesozoic, suggesting that the Guanjiagou Formation was deposited in the Norian of the Late Triassic, ca. 220 Ma. Therefore, 40Ar/39Ar and sedimen-tary analyses suggest that the Guanjiagou Formation con-tains sediments that may have filled in a remnant ocean ba-sin, which might be part of the Anyemaqen-Mianle ocean, or Tethys on the southern side of Central Orogenic Belt in China during the Late Paleozoic to Early Mesozoic.