The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cr...The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cratons.However,there remains controversy over the destruction pattern(e.g.,Zhu et al.,2017).During the Early Mesozoic,crustal thickening occurred in the Xuhuai and Qinling orogens,followed by lithospheric delamination leading to crustal thinning(Chen et al.,2023).The middle and upper crustal thinning in the Yanshan and Taihang uplifts was induced by mafic magma underplating(Ji et al.,2009).展开更多
The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,w...The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,which is only associated with the Indo-Asian collision(Molnar and Tapponnier,1975;Jolivet et al.,1990;Tapponnier et al.,2001;Yin,2010;Xu et al.,2013;Zhao et al.,2016),is caused by the Pacific-Asian collision(Cui,1997;Schellart and Lister,2005;Fan et al.,2019),or is connected with a combined effect of the Indo-Asian collision and the Pacific-Eurasia convergence(Ren et al.,2002;Li et al.,2013;Shi et al.,2015;Liu et al.,2019).展开更多
Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities...Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.展开更多
The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-roc...The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.展开更多
The paleocontinental margins have frequent and intensive tectonic movement and various ore forming processes. According to their tectono dynamic characteristics, the paleocontinental margins can be classified into t...The paleocontinental margins have frequent and intensive tectonic movement and various ore forming processes. According to their tectono dynamic characteristics, the paleocontinental margins can be classified into three types: the divergent, the convergent and the transformational. Each type has its specific geological geochemical processes and metallogenic system. The paper discusses the tectonic evolution and ore forming features of the North China block margins, puts forward conceptions such as complexity, variety and multi stage development of metallogenic evolution in the paleocontinental margins, and expounds five factors controlling the formation of large superlarge ore deposits in the paleocontinental margins: (1) channelway, (2) rendezvous of fluids, (3) abundance of ore source, (4) thermo dynamic anomaly, (5) long duration of structural activities.展开更多
The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and ...The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and different times. Based on the study on the structural evolution of the NCC, the authors made a new division of tectonic units of the NCC. Through an analysis of the data of 1:25000 geochemical survey on stream sediments, regional geochemical features of main ore-forming elements including Au, Ag, Cu, Pb, Zn, W, Ni, Co and Mo of the NCC are discussed in the paper. Then different metallogenic systems and their forming processes and geodynamics are discussed in detail. At last, temporal and spatial distribution regularities are summarized and ten favorable ore-control factors on the paleocontinental margins are put forward, including (1) abundance of ore sources; (2) rendezvous of ore-forming fluids; (3) high thermo-dynamic anomaly; (4) remarkable Earth crust-mantle interaction; (5) cluster of macroscopic structures and their long activities; (6) diversity of ore-forming environments; (7) long geohistory; (8) multiforms of critical transitional ore-forming mechanisms; (9) multi-staged and superimposed ore-formation; and (10) suitable preservation condition.展开更多
The Hadamiao granodiorite,located on the northern margin of the North China platform and acting as the country rock of gold deposits in the Hadamiao region,was formed in the same age and similar tectonic settings with...The Hadamiao granodiorite,located on the northern margin of the North China platform and acting as the country rock of gold deposits in the Hadamiao region,was formed in the same age and similar tectonic settings with the Hadamiao gold deposit and the large-scale Bilihe gold deposit in the same area.By using the LA-ICP-MS method,the U-Pb age obtained is 267±1.3 Ma,which represents the crystallized age of the granodiorite,and that of the xenolithic zircon is 442.8±5 Ma. Base on the main elements,it exhibits the features of calc-alkaline to high-potassium calc-alkaline series,low silicon,and quasi-aluminous I-type granites,and with high magnesium(Mg~#=0.45-0.57) and high sodium contents(Na_2O/K_2O=0.98-2.29).The SREE values(81.6-110.15 ppm) are relatively low,the fractionations between LREE and HREE are obvious,showing a right-inclined dispersion in the REE distribution diagram.Compared with the primitive mantle,the rock is relatively rich in LREE(La and Ce),LILE(K,Sr,and Th),and intensively depleted in HFSE(Ti,P,Nb and Ta).The ratios of Sr/Y and(La/Yb)_N and the contents of Rb,Nb and Y are relatively low,the Sr values are high (436.35-567.26 ppm),and the Yb contents of most samples are low(1.25-1.8),which indicate the features of typical continental margin arc and adakitic rocks.According to the values ofε_(Nd)(t)(-2.4 to +0.2) and I_(Sr)(0.7028-0.7083),and variations of the La/Sm ratios,the Hadamiao granodiorite was formed from mixing of the thickened molten lower crust and the mantle wedge substances.The rock was related to the southward subduction and accretion of the Paleo-Asia Ocean in the Late Paleozoic, being Late Paleozoic magma of the continental margin arc formed on the basement of the Early Paleozoic accretion complexes,and showing a trend of turning into adakitic rocks,which indicates their great metallogenic(Au) potential.展开更多
The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framew...The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.展开更多
The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.H...The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.展开更多
The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zh...Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).展开更多
1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Crato...1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).展开更多
The North China block,the western portion of the Sino- Korean Craton,is rounded byYanshanian in the north and Qinling- Dabie orogenic belts in the south.The widespread de-velopment of extensional basins in thisblock i...The North China block,the western portion of the Sino- Korean Craton,is rounded byYanshanian in the north and Qinling- Dabie orogenic belts in the south.The widespread de-velopment of extensional basins in thisblock indicates horizontal extension or continued thin-ning of a previousely thickened,unstable lithosphere throughout the Mesozoic.In this pa-per,we attempt to simulate numerically the geodynamical process of the basin formation byusing the mountain- basin evolution system.We assume thatthe formation of numeroussedi-mentary basins in the North China block is the resultofthe crustal extension,which destruc-ts rapidly the previously thickened crust.The gravitational collapse of the thickened crust ispossibly triggered by the re- orientation of the far- field stress regime,or the relaxation of theboundary resistantstress.展开更多
1 Introduction The Wulong glomerophyric diorite porphyry has an extremely peculiar texture with plagioclase phenocrysts clustered as flower-like glomerocrysts(Figs.1a&b),which is never discovered elsewhere of the ...1 Introduction The Wulong glomerophyric diorite porphyry has an extremely peculiar texture with plagioclase phenocrysts clustered as flower-like glomerocrysts(Figs.1a&b),which is never discovered elsewhere of the world.The展开更多
In the Inner Mongolia axis and Jiaoliao anteclise along the northern margin of the North China Platform.it has been found that the strata formerly considered as Archaean and Proterozoic are in fact an ophiolite suites...In the Inner Mongolia axis and Jiaoliao anteclise along the northern margin of the North China Platform.it has been found that the strata formerly considered as Archaean and Proterozoic are in fact an ophiolite suitesimilar to the Early Palaeozoic Ondor Sum Group in the Northern Geosyncline region of China. The stratahave been named in northern Liaoning as the Qinghezhen Group. The emphasis of this paper is on the discus-sion of the simall shelly fossils found in the siliceous rocks in the upper part of the Qinghezhen Group. Thisophiolite suite stretches in an E-W direction for about 1000 km along the northern margin of the North ChinaPlatform. in which 15 fossil localities with stable stratigraphic horizons have been discovered. In this paper. 4types. 7 genera (including 5 new ones) and 10 species (including 8 new ones and 1 new subspecies) aredescribed, which are collectively referred to as the Qinghezhen Fauna. The characteristics of these fossils are:shell form simple. the maximum length not exceeding 4 mm. with obvious shell wall and wall ornaments. TheQinghezhen Fauna is comparable in shell structure of some genera and species with the Meishucun Fauna inSouth China, but differs from the latter in having only monotonous fossil groups developed in a distinctly va-ried ecological environment. The two faunas may belong to the same evolutionary stage of the Early Cambrianbut have developed parallelly in different regions. The existence of the Qinghezhen Fauna represents an impor-tant biological event in the Early Cambrian in the Northern Geosyncline region of China. The discovery of theQinghezhen Fauna will bring new knowledge and profound influence to a series of problems on basic geologyand mineral deposit prospecting such as the Cambrian faunas. biogeographical povincialism in China and thegeotectonic features of the northern margin of the North China Platform.展开更多
The Funan-Huoqiu area is located in the border tectonic belt between the North China and South China active block regions. By means of seismological and geological surveys and synthetic analysis, evidences of tectonic...The Funan-Huoqiu area is located in the border tectonic belt between the North China and South China active block regions. By means of seismological and geological surveys and synthetic analysis, evidences of tectonic deformation in lower intensity have been found in the area since Late Pleistocene, where small earthquakes are distributed linearly along the main faults, conjugate shear joints are developed in the Upper Pleistocene nearby the faults. In the south of the studied region, fissures with different lengths, widths and directions occurred successively in Gushi, Huoqiu, Funan and other places of the area, in the 1970’s, and the direction of the fissures is approximately consistent with that of the Feizhong fault and Wanglaorenji fault. The authors hold that the clustering of small earthquakes, the conjugate shear joints developed in the Upper Pleistocene, the crumpled deformation of materials on fault plane, and the development of modern surface fissures in the area all reflect that the energy in the crust was slowly released, and that the weak deformation took place in corresponding faults. There was only one destructive earthquake taking place in the area (the Jiangkouji {M_S43/4} earthquake). Altogather, there has been weak activity in the area since the Late Quaternary, and it is mainly shown as a creep-slip.展开更多
The Paleoproterozoic Xiong’er Group is composed of mafic to felsic volcanic rocks and minor sedimentary rocks,distributed along the southern margin of the North China craton(NCC).It is a key marker for regional
Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode g...Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode gold deposits(Ciobanu and Cook,2002;Pals et al.展开更多
This paper introduces the result of studying on paleomagnetism of 91 specimens from 13 sites from Liujiagou Formation in Dashu Village, Wu ’an city, Hebei Province. The result reveals that North China block (NCB) w...This paper introduces the result of studying on paleomagnetism of 91 specimens from 13 sites from Liujiagou Formation in Dashu Village, Wu ’an city, Hebei Province. The result reveals that North China block (NCB) was not united with Yangtze block (YB) in the Early Triassic. From the Early Triassic to now, NCB has rotated 30.0° counterclockwise, but YB has rotated 45.1° clockwise.展开更多
Global Positioning System (GPS) observations during four measurement campaigns from 1992 to 1999 are used in a study of the temporal and spatial variation characteristics of crustal deformation of active tectonic bloc...Global Positioning System (GPS) observations during four measurement campaigns from 1992 to 1999 are used in a study of the temporal and spatial variation characteristics of crustal deformation of active tectonic blocks in North China. The Euler vectors for these active blocks are determined on the basis of GPS velocities of a group relative stable points in 1992,1995,1996 and in 1996,1999 respectively. We have studied the relative motion between blocks at the boundaries and the intra block deformation field. We have also inverted the strain rate fields for these active blocks by bi cubic spline model based on the GPS velocity field. The results show that the intra block deformation rates are different from those in block boundary zones, and are also different in different periods; the deformational field is generally characterized by intra-block extension in North China.展开更多
基金granted by the National Key R&D Plan(Grant No.2022YFF0800702)project SINOPROBE on sub-project SINOPROBE-01,National Natural Science Foundation of China(Grants 41274003,41674101,and 41974112)。
文摘The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cratons.However,there remains controversy over the destruction pattern(e.g.,Zhu et al.,2017).During the Early Mesozoic,crustal thickening occurred in the Xuhuai and Qinling orogens,followed by lithospheric delamination leading to crustal thinning(Chen et al.,2023).The middle and upper crustal thinning in the Yanshan and Taihang uplifts was induced by mafic magma underplating(Ji et al.,2009).
基金supported by the National Natural Science Foundation of China(Grant No.41672203)China Geological Survey(CGS)(Grant Nos.DD20190018,DD20160060,1212011120099,1212011120100,1212011220259).
文摘The Eurasian continent was subject to multiphase intensive intracontinental deformation in the Cenozoic(Fig.1A).However,its Cenozoic intra-continental deformation process and the driving force has long been disputed,which is only associated with the Indo-Asian collision(Molnar and Tapponnier,1975;Jolivet et al.,1990;Tapponnier et al.,2001;Yin,2010;Xu et al.,2013;Zhao et al.,2016),is caused by the Pacific-Asian collision(Cui,1997;Schellart and Lister,2005;Fan et al.,2019),or is connected with a combined effect of the Indo-Asian collision and the Pacific-Eurasia convergence(Ren et al.,2002;Li et al.,2013;Shi et al.,2015;Liu et al.,2019).
文摘Several stratigraphic breaks and unconformities exist in the Mesoproterozoic successions in the northern margin of the North China Block. Geologic characters and spatial distributions of five of these un- conformities, which have resulted from different geological processes, have been studied. The uncon- formity beneath the Dahongyu Formation is interpreted as a breakup unconformity, representing the time of transition from continental rift to passive continental margin. The unconformities beneath the Gaoyuzhuang and the Yangzhuang formations are considered to be the consequence of regional eustatic fluctuations, leading to the exposure of highlands in passive margins during low sea-level stands and transgressive deposition on coastal regions during high sea-level stands. The unconformity atop the Tieling Formation might be caused by uplift due to contractional deformation in a back-arc setting, whereas the uplift after the deposition of the Xiamaling Formation might be attributed to a continental collision event. It is assumed that the occurrences of these unconformities in the Mesoproterozoic successions in the northern margin of the North China Block had a close bearing on the assemblage and breakup of the Columbia and Rodinia supercontinents.
基金financially supported by the National Key Research and Development Program (Grant Nos. 2018YFC0603804)the China Geological Survey (Grants DD20190042, DD20190039 and DD20160048-05)
文摘The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.
文摘The paleocontinental margins have frequent and intensive tectonic movement and various ore forming processes. According to their tectono dynamic characteristics, the paleocontinental margins can be classified into three types: the divergent, the convergent and the transformational. Each type has its specific geological geochemical processes and metallogenic system. The paper discusses the tectonic evolution and ore forming features of the North China block margins, puts forward conceptions such as complexity, variety and multi stage development of metallogenic evolution in the paleocontinental margins, and expounds five factors controlling the formation of large superlarge ore deposits in the paleocontinental margins: (1) channelway, (2) rendezvous of fluids, (3) abundance of ore source, (4) thermo dynamic anomaly, (5) long duration of structural activities.
基金the Key ProgramNational Natural Science Foundation of China(No.40234051) National Key Program of Basic Research(No.2001CB409807).
文摘The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and different times. Based on the study on the structural evolution of the NCC, the authors made a new division of tectonic units of the NCC. Through an analysis of the data of 1:25000 geochemical survey on stream sediments, regional geochemical features of main ore-forming elements including Au, Ag, Cu, Pb, Zn, W, Ni, Co and Mo of the NCC are discussed in the paper. Then different metallogenic systems and their forming processes and geodynamics are discussed in detail. At last, temporal and spatial distribution regularities are summarized and ten favorable ore-control factors on the paleocontinental margins are put forward, including (1) abundance of ore sources; (2) rendezvous of ore-forming fluids; (3) high thermo-dynamic anomaly; (4) remarkable Earth crust-mantle interaction; (5) cluster of macroscopic structures and their long activities; (6) diversity of ore-forming environments; (7) long geohistory; (8) multiforms of critical transitional ore-forming mechanisms; (9) multi-staged and superimposed ore-formation; and (10) suitable preservation condition.
文摘The Hadamiao granodiorite,located on the northern margin of the North China platform and acting as the country rock of gold deposits in the Hadamiao region,was formed in the same age and similar tectonic settings with the Hadamiao gold deposit and the large-scale Bilihe gold deposit in the same area.By using the LA-ICP-MS method,the U-Pb age obtained is 267±1.3 Ma,which represents the crystallized age of the granodiorite,and that of the xenolithic zircon is 442.8±5 Ma. Base on the main elements,it exhibits the features of calc-alkaline to high-potassium calc-alkaline series,low silicon,and quasi-aluminous I-type granites,and with high magnesium(Mg~#=0.45-0.57) and high sodium contents(Na_2O/K_2O=0.98-2.29).The SREE values(81.6-110.15 ppm) are relatively low,the fractionations between LREE and HREE are obvious,showing a right-inclined dispersion in the REE distribution diagram.Compared with the primitive mantle,the rock is relatively rich in LREE(La and Ce),LILE(K,Sr,and Th),and intensively depleted in HFSE(Ti,P,Nb and Ta).The ratios of Sr/Y and(La/Yb)_N and the contents of Rb,Nb and Y are relatively low,the Sr values are high (436.35-567.26 ppm),and the Yb contents of most samples are low(1.25-1.8),which indicate the features of typical continental margin arc and adakitic rocks.According to the values ofε_(Nd)(t)(-2.4 to +0.2) and I_(Sr)(0.7028-0.7083),and variations of the La/Sm ratios,the Hadamiao granodiorite was formed from mixing of the thickened molten lower crust and the mantle wedge substances.The rock was related to the southward subduction and accretion of the Paleo-Asia Ocean in the Late Paleozoic, being Late Paleozoic magma of the continental margin arc formed on the basement of the Early Paleozoic accretion complexes,and showing a trend of turning into adakitic rocks,which indicates their great metallogenic(Au) potential.
基金financially supported by the National Natural Science Foundation of China(Grant No.41872056)。
文摘The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.
基金funded by the Basic Scientific Research Fund of the Institute of Geology, Chinese Academy of Geological Sciences (Grant No. J2103)National Key Research and Development Project of the Ministry of Science and Technology of China (Grant No. 2017YFC0601301)+1 种基金the National Natural Science Foundation of China (Grant No. 41972224)the China Geological Survey (Grant No. DD2019004)。
文摘The Alxa Block is the westernmost part of the North China Craton(NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC.However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICPMS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex(DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust(3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
基金supported by the National Nature Science Foundation of China(grant No.U1504405)
文摘Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).
基金supported by the NSFC (41373039)the DREAM project of MOST, China (2016YFC0600403)
文摘1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).
文摘The North China block,the western portion of the Sino- Korean Craton,is rounded byYanshanian in the north and Qinling- Dabie orogenic belts in the south.The widespread de-velopment of extensional basins in thisblock indicates horizontal extension or continued thin-ning of a previousely thickened,unstable lithosphere throughout the Mesozoic.In this pa-per,we attempt to simulate numerically the geodynamical process of the basin formation byusing the mountain- basin evolution system.We assume thatthe formation of numeroussedi-mentary basins in the North China block is the resultofthe crustal extension,which destruc-ts rapidly the previously thickened crust.The gravitational collapse of the thickened crust ispossibly triggered by the re- orientation of the far- field stress regime,or the relaxation of theboundary resistantstress.
基金financially supported by the National Natural Science Foundation of China(No.41502046,41530211 and 41272079)
文摘1 Introduction The Wulong glomerophyric diorite porphyry has an extremely peculiar texture with plagioclase phenocrysts clustered as flower-like glomerocrysts(Figs.1a&b),which is never discovered elsewhere of the world.The
文摘In the Inner Mongolia axis and Jiaoliao anteclise along the northern margin of the North China Platform.it has been found that the strata formerly considered as Archaean and Proterozoic are in fact an ophiolite suitesimilar to the Early Palaeozoic Ondor Sum Group in the Northern Geosyncline region of China. The stratahave been named in northern Liaoning as the Qinghezhen Group. The emphasis of this paper is on the discus-sion of the simall shelly fossils found in the siliceous rocks in the upper part of the Qinghezhen Group. Thisophiolite suite stretches in an E-W direction for about 1000 km along the northern margin of the North ChinaPlatform. in which 15 fossil localities with stable stratigraphic horizons have been discovered. In this paper. 4types. 7 genera (including 5 new ones) and 10 species (including 8 new ones and 1 new subspecies) aredescribed, which are collectively referred to as the Qinghezhen Fauna. The characteristics of these fossils are:shell form simple. the maximum length not exceeding 4 mm. with obvious shell wall and wall ornaments. TheQinghezhen Fauna is comparable in shell structure of some genera and species with the Meishucun Fauna inSouth China, but differs from the latter in having only monotonous fossil groups developed in a distinctly va-ried ecological environment. The two faunas may belong to the same evolutionary stage of the Early Cambrianbut have developed parallelly in different regions. The existence of the Qinghezhen Fauna represents an impor-tant biological event in the Early Cambrian in the Northern Geosyncline region of China. The discovery of theQinghezhen Fauna will bring new knowledge and profound influence to a series of problems on basic geologyand mineral deposit prospecting such as the Cambrian faunas. biogeographical povincialism in China and thegeotectonic features of the northern margin of the North China Platform.
文摘The Funan-Huoqiu area is located in the border tectonic belt between the North China and South China active block regions. By means of seismological and geological surveys and synthetic analysis, evidences of tectonic deformation in lower intensity have been found in the area since Late Pleistocene, where small earthquakes are distributed linearly along the main faults, conjugate shear joints are developed in the Upper Pleistocene nearby the faults. In the south of the studied region, fissures with different lengths, widths and directions occurred successively in Gushi, Huoqiu, Funan and other places of the area, in the 1970’s, and the direction of the fissures is approximately consistent with that of the Feizhong fault and Wanglaorenji fault. The authors hold that the clustering of small earthquakes, the conjugate shear joints developed in the Upper Pleistocene, the crumpled deformation of materials on fault plane, and the development of modern surface fissures in the area all reflect that the energy in the crust was slowly released, and that the weak deformation took place in corresponding faults. There was only one destructive earthquake taking place in the area (the Jiangkouji {M_S43/4} earthquake). Altogather, there has been weak activity in the area since the Late Quaternary, and it is mainly shown as a creep-slip.
文摘The Paleoproterozoic Xiong’er Group is composed of mafic to felsic volcanic rocks and minor sedimentary rocks,distributed along the southern margin of the North China craton(NCC).It is a key marker for regional
基金supported by the Natural Science Foundation of China(grants 9081400440821061)the 111 Project(B07039)
文摘Gold is commonly associated with arsenic in As-rich pyrite or arsenopyrite in a variety types of gold deposit,such as sediment-hosted gold deposits,epithermal Au-Ag deposits,Au-rich VMS deposits,and mesothermal lode gold deposits(Ciobanu and Cook,2002;Pals et al.
文摘This paper introduces the result of studying on paleomagnetism of 91 specimens from 13 sites from Liujiagou Formation in Dashu Village, Wu ’an city, Hebei Province. The result reveals that North China block (NCB) was not united with Yangtze block (YB) in the Early Triassic. From the Early Triassic to now, NCB has rotated 30.0° counterclockwise, but YB has rotated 45.1° clockwise.
文摘Global Positioning System (GPS) observations during four measurement campaigns from 1992 to 1999 are used in a study of the temporal and spatial variation characteristics of crustal deformation of active tectonic blocks in North China. The Euler vectors for these active blocks are determined on the basis of GPS velocities of a group relative stable points in 1992,1995,1996 and in 1996,1999 respectively. We have studied the relative motion between blocks at the boundaries and the intra block deformation field. We have also inverted the strain rate fields for these active blocks by bi cubic spline model based on the GPS velocity field. The results show that the intra block deformation rates are different from those in block boundary zones, and are also different in different periods; the deformational field is generally characterized by intra-block extension in North China.