The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cr...The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cratons.However,there remains controversy over the destruction pattern(e.g.,Zhu et al.,2017).During the Early Mesozoic,crustal thickening occurred in the Xuhuai and Qinling orogens,followed by lithospheric delamination leading to crustal thinning(Chen et al.,2023).The middle and upper crustal thinning in the Yanshan and Taihang uplifts was induced by mafic magma underplating(Ji et al.,2009).展开更多
At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of...At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.展开更多
The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus ar...The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.展开更多
The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia...The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong’er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong’er Group.The Xiong’er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong’er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zirconεHft values of-17.4 to 8.8,whole-rock initial 87Sr/86Sr values of 0.7023 to 0.7177 andεNd(t)values of-10.9 to 6.4.and Pb isotopes(206Pb/204Pb=14.366-16.431,207Pb/204Pb=15.106-15.371,208Pb/204Pb=32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong’er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong’er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.展开更多
This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton...This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (-1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW-SEE direction to the southern margin of the North China Craton.展开更多
The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-roc...The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.展开更多
The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U-Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangd...The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U-Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangdu area, Inner Mongolia, aiming to provide more information for interprating this problem. Based on the acquired data, this paper comes to the following conclusions. Firstly, the depositional age of Bayan Obo Group might be from Meso- to Neoproterozoic according to the zircons U-Pb dating results. The lower succession of this group, namely Dulahala and Jianshan formations deposited between 1800 and 1650 Ma. The Halahuogete and Bilute formations deposited between 1500 and 1350 Ma. For Baiyinbaolage and Hujiertu formations, their depositional age was 1250-900 Ma. Secondly, for the provenance of Bayan Obo Group, this paper believes detrital zircons with age of 2.51-2.71 Ga and 2.00-2.48 Ga were from Guyang, Xi Ulanbulang and Zhuozi area;the Khondalite Belt provided detrital zircons with age of 1.95-1.80 Ga;zircons with age of 1.60-1.75 Ga might come from granitic rocks in Miyun Area. The magmatism after 1.60 Ga was rarely recorded in the NCC, therefore those zircons with ages younger than 1.60 Ga might come from outside of NCC. The magmatism with the same age existed in Baltic, Amazonia and Laurentia. Based on previous paleomagnetic researches, this paper proposes that NCC might receive detritus from Baltic during 1560-1350 Ma and had affinity with Laurentia and Amazonia at ~0.9 Ga in Rodinia. Baltic, Amazonia and Laurentia might be potential provenances for non-NCC detritus in Bayan Obo Group.展开更多
Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1...Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.展开更多
The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and ...The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and different times. Based on the study on the structural evolution of the NCC, the authors made a new division of tectonic units of the NCC. Through an analysis of the data of 1:25000 geochemical survey on stream sediments, regional geochemical features of main ore-forming elements including Au, Ag, Cu, Pb, Zn, W, Ni, Co and Mo of the NCC are discussed in the paper. Then different metallogenic systems and their forming processes and geodynamics are discussed in detail. At last, temporal and spatial distribution regularities are summarized and ten favorable ore-control factors on the paleocontinental margins are put forward, including (1) abundance of ore sources; (2) rendezvous of ore-forming fluids; (3) high thermo-dynamic anomaly; (4) remarkable Earth crust-mantle interaction; (5) cluster of macroscopic structures and their long activities; (6) diversity of ore-forming environments; (7) long geohistory; (8) multiforms of critical transitional ore-forming mechanisms; (9) multi-staged and superimposed ore-formation; and (10) suitable preservation condition.展开更多
The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framew...The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.展开更多
The petrology, geochronology and geochemistry of the mafic enclaves in the Mid-Late Triassic Jiefangyingzi pluton from Chifeng area, southern Inner Mongolia, in China are studied to reveal their petrogenetic relations...The petrology, geochronology and geochemistry of the mafic enclaves in the Mid-Late Triassic Jiefangyingzi pluton from Chifeng area, southern Inner Mongolia, in China are studied to reveal their petrogenetic relationship with the host pluton. Furthermore, the coeval magmatic assemblage and its petrogenesis on the northern margin of the North China craton(NCC) are studied synthetically to elucidate their tectonic setting and the implications for the destruction of the NCC. Zircon U-Pb dating reveals that the mafic enclaves formed at 230.4 ± 2.2 Ma, which is similar to the age of the host pluton. The most basic mafic enclaves belong to weak alkaline rocks, and they display rare earth element(REE) and trace element normalized patterns and trace element compositions similar to those of ocean island basalt(OIB). In addition, they have positive εNd(t) values(+3.84 to +4.94) similar to those of the Cenozoic basalts on the northern margin of the NCC. All of these geochemical characteristics suggest that the basic mafic rocks originated from the asthenosphere. Petrological and geochemical studies suggest that the Jiefangyingzi pluton and the intermediate mafic enclaves were formed by the mixing of the asthenosphere-derived and crust-derived magmas in different degrees. The Mid-Late Triassic magmatic rocks on the northern margin of the NCC could be classified into three assemblages according to their geochemical compositions: alkaline series, weak alkaline–sub-alkaline series and sub-alkaline series rocks. Petrogenetic analyses suggest that the upwelling of the asthenosphere played an important role in the formation of these Mid-Late Triassic magmatic rocks. Basing on an analysis of regional geological data, we suggest that the northern margin of the NCC underwent destruction due to the upwelling of the asthenosphere during the Mid-Late Triassic, which was induced by the delamination of the root of the collisional orogeny between Sino-Korean and Siberian paleoplates in Late Permian.展开更多
The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zh...Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).展开更多
1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Crato...1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).展开更多
The Cenozoic basalts with OIB-affinity in northern marginal region of the North China Craton are thought to experience minor even no crustal contamination during the magma evolution.The whole-rock Sr-Nd-Pb-Hf isotopes...The Cenozoic basalts with OIB-affinity in northern marginal region of the North China Craton are thought to experience minor even no crustal contamination during the magma evolution.The whole-rock Sr-Nd-Pb-Hf isotopes are attributed to a two-component mixing between depleted and enriched mantle sources,while the major element variations are controlled by the fractional crystallization of olivine and clinopyroxene.However,in this study,the new Os isotopic data proposes an opposite model for the Cenozoic basalts in northern marginal region of the North China Craton.In this model,the Jining basalts were contaminated by the Archean mafic rocks during the magma storage and ascent.The crustal contamination process is supported by(1)the highly radiogenic Os isotopic compositions,and(2)the positive correlation between 187Os/188Os and 1/Os of the Jining basalts.By modeling the Os isotopic composition of the basalts,an incorporation of<10%mafic granulites/amphibolites to the parental magma can successfully explain the initial values of highly radiogenic Os.In contrast,the unradiogenic and uniform Os isotopic compositions of the Chifeng basalts suggest negligible crustal contamination.Os isotopic data acts as an indicator of crustal contamination during magma evolution,providing us a novel insight into the evolution of the intra-continental OIB-like basalts worldwide.展开更多
Geological maps encode vast amounts of data about rock types,ages,chemistry,orogenic architecture and deep-time history or different tectonic units,yet these are often difficult to extract because of the way different...Geological maps encode vast amounts of data about rock types,ages,chemistry,orogenic architecture and deep-time history or different tectonic units,yet these are often difficult to extract because of the way different geologists portray their results at various scales.To understand orogenesis in 4D,it is essential to uniformly integrate map data,together with geophysical data and deep geochemical mapping(Wang et al.,2023).展开更多
North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan Count...North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan County, Dezhou City, in Shandong Province, China. This earthquake was the largest in the eastern North China Craton(NCC) since the Tangshan earthquake of 1976. Due to the absence of surface ruptures, the fault responsible for the Pingyuan Mw5.5 earthquake remains unclear. To reveal the subsurface geological structure near the earthquake epicenter, this study utilized highresolution two-dimensional seismic reflection profiles to interpret pre-existing faults.展开更多
Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generate...Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.展开更多
The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization origi...The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.展开更多
The North China Craton(NCC)is one of the most complex cratons in the world.It underwent a series of tectonothermal events during the Neoarchean-Paleoproterozoic.The petrogenesis of potassic granitoids,the timing,and t...The North China Craton(NCC)is one of the most complex cratons in the world.It underwent a series of tectonothermal events during the Neoarchean-Paleoproterozoic.The petrogenesis of potassic granitoids,the timing,and the style of Archean crustal growth are still debated.Systematic field and petrological stdudies on the potassic meta-granites from the Guyang-Chayouzhongqi region were carried out.New U-Pb ages,zircon Lu-Hf isotopic analyses,and whole-rock geochemical data were obtained.Two groups(~2.7 Ga and~2.5 Ga)of potassic meta-granites were recognized.The~2.7 Ga meta-granites are mainly A2-type,with variableεHf(t)values(-8.4 to+3.3)and Archean one stage model ages(T_(DM)=~3.0 Ga),indicating that their source was derived from ancient anatectic TTG-like granite and depleted mantle,which suggests that thin crust had formed in the Guyang-Chayouzhongqi region by~3.0 Ga.Similar to the K-rich granites in the NCC,most of the~2.5 Ga potassic meta-granites are typical of A1-type granite,and are enriched in Sm and Gd and depleted in Nb,Ta,P,and Ti.The ages and isotopic data indicate that the~2.5 Ga meta-granites were generated from juvenile crustal sources with Neoarchean TTGs.The overall zircon U-Pb and Hf isotopic data furthermore suggested that the~2.7 Ga event is the most important stage of magmatic accretion in the NCC,similar to other cratons.In contrast,reworking or metamorphic alteration was the main crustal process in the NCC at~2.5 Ga.展开更多
基金granted by the National Key R&D Plan(Grant No.2022YFF0800702)project SINOPROBE on sub-project SINOPROBE-01,National Natural Science Foundation of China(Grants 41274003,41674101,and 41974112)。
文摘The Eastern Block of the North China Craton(NCC)(Fig.1)has undergone severe lithospheric destruction,with crustal thinning down to 100 km depth(Chen et al.,2009),contrasting sharply with the stable Kalahari and Rae cratons.However,there remains controversy over the destruction pattern(e.g.,Zhu et al.,2017).During the Early Mesozoic,crustal thickening occurred in the Xuhuai and Qinling orogens,followed by lithospheric delamination leading to crustal thinning(Chen et al.,2023).The middle and upper crustal thinning in the Yanshan and Taihang uplifts was induced by mafic magma underplating(Ji et al.,2009).
基金The Natural gas formation rules and key technologies for exploration in the western exploration area KT2022A02the Science and Technology Fundamental Resources Investigation Program under contract No. 2023FY101500+2 种基金the National Key Research and Development Program of China under contract No. 2023YFC3012005the Central Public-interest Scientific Institution Basal Researchunder contract No. CEAIEF20230505。
文摘At present, the main controlling factors of helium accumulation is one of the key scientific problems restricting the exploration and development of helium reservoir. In this paper, based on the calculation results of He generation rate and the geochemical characteristics of the produced gas, both the similarities and differences between natural gas and He resources in the Bohai Bay, Ordos and the surrounding Songliao Basin are compared and analyzed, discussing the main controlling factors of helium resources in the three main petroliferous basins of the North China Craton. It is found that the three basins of Bohai Bay, Ordos and Songliao have similar characteristics of source rocks, reservoirs and cap rocks, that's why their methane resource characteristics are essentially the same. The calculated ~4He generation per cubic metamorphic crystalline basement in the three basins is roughly equivalent, which is consistent with the measured He resources, and it is believed that the ~4He of radiogenic from the crust is the main factor controlling the overall He accumulation in the three basins;there is almost no contribution of the mantle-derived CH_4, which suggests that the transport and uplift of mantle-derived ~3He carried by the present-day magmatic activities along the deep-large faults is not the main reason for the mantle-derived ~3He mixing in the basins. Combined with the results of regional volcanic and geophysical studies,it is concluded that under the background of the destruction of North China Craton, magma intrusion carried a large amount of mantle-derived material and formed basic volcanic rocks in the Bohai Bay Basin and Songliao Basin, which replenished mantle-derived ~3He for the interior of the basins, and that strong seismic activities in and around the basins also promoted the upward migration of mantle source ~3He. This study suggests that the tectonic zone with dense volcanic rocks in the Cenozoic era and a high incidence of historical strong earthquakes history may be a potential area for helium resource exploration.
基金supported by the National Natural Science Foundation of China(Nos.41472065 and 42073059).
文摘The experimental results of the reactions between an alkaline basaltic melt and mantle orthopyroxenes under high-temperature and high-pressure conditions of 1300–1400℃ and 2.0–3.0 GPa using a six-anvil apparatus are reported in this paper.The reactions are proposed to simulate the interactions between melts from the asthenospheric mantle and the lithospheric mantle.The starting melt in the experiments was made from the alkaline basalt occurring in Fuxin,Liaoning Province,and the orthopyroxenes were separated from the mantle xenoliths in Damaping,Hebei Province.The results show that clinopyroxenes were formed in all the reactions between the alkaline basaltic melt and orthopyroxenes under the studied P–T conditions.The formation of clinopyroxene in the reaction zone is mainly controlled by dissolution–crystallization,and the chemical compositions of the reacted melt are primarily infl uenced by the diff usion eff ect.Temperature is the most important parameter controlling the reactions between the melt and orthopyroxenes,which has a direct impact on the melting of orthopyroxenes and the diff usion of chemical components in the melt.Temperature also directly controls the chemical compositions of the newly formed clinopyroxenes in the reaction zone and the reacted melt.The formation of clinopyroxenes from the reactions between the alkaline basaltic melt and orthopyroxenes can result in an increase of CaO and Al_(2)O_(3) contents in the rocks containing this mineral.Therefore,the reactions between the alkaline basaltic melt from the asthenospheric mantle and orthopyroxenes from the lithospheric mantle can lead to the evolution of lithospheric mantle in the North China Craton from refractory to fertile with relatively high CaO and Al 2 O 3 contents.In addition,the reacted melts in some runs were transformed from the starting alkaline basaltic into tholeiitic after reactions,indicating that tholeiitic magma could be generated from alkaline basaltic one via reactions between the latter and orthopyroxene.
基金supported by the National Natural Science Foundation of China(Grant No.41872080)the National Basic Research Program of China(Grant No.2015CB452603)+1 种基金the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences(Beijing)(Grant No.MSFGPMR201804)and the Fundamental Research Funds for the Central Universities of China(Grant Nos.2652016077,2652017223)
文摘The volcanic rocks of the Xiong’er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong’er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong’er Group.The Xiong’er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong’er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zirconεHft values of-17.4 to 8.8,whole-rock initial 87Sr/86Sr values of 0.7023 to 0.7177 andεNd(t)values of-10.9 to 6.4.and Pb isotopes(206Pb/204Pb=14.366-16.431,207Pb/204Pb=15.106-15.371,208Pb/204Pb=32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong’er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong’er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting.
基金supported by the Ministry of Land and Resources of the Peoples’ Republic of China (1212010711815, 1212010811033) and the Beijing SHRIMP Center
文摘This paper reports sensitive high resolution ion micro-probe U-Pb zircon ages for the "Huoqiu Group" and granitoids of the Early Precambrian basement in the Huoqiu area, southeastern margin of the North China Craton. The "Huoqiu Group" is similar in rock association and metamorphism to the khondalite series, apart from it containing considerable amounts of banded iron formation. All detrital zircons from the "Huoqiu Group" meta-sedimentary rocks are 3.0 Ga and 2.75 Ga, without any 2.5 Ga and younger ones, as is commonly found in Paleoproterozoic khondalite series in other areas of the North China Craton. In the Huoqiu area, 2.75 Ga and 2.56 Ga granitoids have also been identified. This basement assemblage underwent strong metamorphism during the late Paleoproterozoic (-1.84 Ga) tectonothermal event that is widely developed in the North China Craton. Thus the formation time of the "Huoqiu Group" can be constrained between 2.75 and 1.84 Ga in terms of detrital and metamorphic zircon ages. It is considered, combined with regional data, that there may be a Paleoproterozoic collision orogen extending in a NWW-SEE direction to the southern margin of the North China Craton.
基金financially supported by the National Key Research and Development Program (Grant Nos. 2018YFC0603804)the China Geological Survey (Grants DD20190042, DD20190039 and DD20160048-05)
文摘The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.
基金financially supported by the National Natural Science Foundation of China (No.41872203)China Geological Survey (No.1212011120709)Doctoral Candidate Inter Discipline Fund of Jilin University (No.10183201837)
文摘The paleoposition of North China Craton in Rodinia has long been in controversial. This paper mainly focuses on the U-Pb geochronological studies of detrital zircons obtained from Bayan Obo Group exposed in the Shangdu area, Inner Mongolia, aiming to provide more information for interprating this problem. Based on the acquired data, this paper comes to the following conclusions. Firstly, the depositional age of Bayan Obo Group might be from Meso- to Neoproterozoic according to the zircons U-Pb dating results. The lower succession of this group, namely Dulahala and Jianshan formations deposited between 1800 and 1650 Ma. The Halahuogete and Bilute formations deposited between 1500 and 1350 Ma. For Baiyinbaolage and Hujiertu formations, their depositional age was 1250-900 Ma. Secondly, for the provenance of Bayan Obo Group, this paper believes detrital zircons with age of 2.51-2.71 Ga and 2.00-2.48 Ga were from Guyang, Xi Ulanbulang and Zhuozi area;the Khondalite Belt provided detrital zircons with age of 1.95-1.80 Ga;zircons with age of 1.60-1.75 Ga might come from granitic rocks in Miyun Area. The magmatism after 1.60 Ga was rarely recorded in the NCC, therefore those zircons with ages younger than 1.60 Ga might come from outside of NCC. The magmatism with the same age existed in Baltic, Amazonia and Laurentia. Based on previous paleomagnetic researches, this paper proposes that NCC might receive detritus from Baltic during 1560-1350 Ma and had affinity with Laurentia and Amazonia at ~0.9 Ga in Rodinia. Baltic, Amazonia and Laurentia might be potential provenances for non-NCC detritus in Bayan Obo Group.
基金financially supported by the NSFC(grant no.41430207, 41602340)China Postdoctoral Science Foundation ( 2016M591246)
文摘Tectonically emplaced peridotites from North Hebei Province, North China Craton, have retained an original harzburgite mineral assemblage of olivine (54%-58%) + orthopyroxene (40%-46%) +minor clinopyroxene (〈1%)+spinel. Samples with honinite-like chemical compositions also coexist with these peridotites. The spinels within the peridotites have high-A1 end-members with A1203 content of 30 wt%-50 wt%, typical of mantle spinels. When compared with experimentally determined melt extraction trajectories, the harzburgites display a high degree of melting and enrichment of SiO2, which is typical of cratonic mantle peridotites. The peridotites display variably enriched light rare earth elements (REEs), relatively depleted middle REEs and weakly fractionated heavy REEs, which suggest a melt extraction of over 25% in the spinel stability field. The occurrence of are- and SSZ-type chromian spinels in the peridotites suggests that melt extraction and metasomatism occurred mostly in a subduction-related setting. This is also supported by the geochemical data of the coexisting boninite-like samples. The peridotites have lS7Os/lSSOs ratios ranging from 0.113-0.122, which is typical of cratonic iithospheric mantle. These lSTOs/ISSOs ratios yield model melt extraction ages (TRD) ranging from 981 Ma to 2054 Ma, which may represent the minimum estimation of the melt extraction age. The Ai203- lSTOs/lSSOs-proxy isochron ages of 2.4 Ga-2.7 Ga suggest a mantle melt depletion age between the Late Achaean and Early Paleoproterozoic. Both the peridotites and boninite-like rocks are therefore interpreted as tectonically exhumed continental lithospheric mantle of the North China Craton, which has experienced mantle melt depletion and subduction-related mantle metasomatism during the Neoarchean- Paleoproterozoic.
基金the Key ProgramNational Natural Science Foundation of China(No.40234051) National Key Program of Basic Research(No.2001CB409807).
文摘The North China Craton (NCC) is one of the largest blocks composing the continent. Different types of continental margins well developed around the NCC, along with lots of metallogenic systems of different metals and different times. Based on the study on the structural evolution of the NCC, the authors made a new division of tectonic units of the NCC. Through an analysis of the data of 1:25000 geochemical survey on stream sediments, regional geochemical features of main ore-forming elements including Au, Ag, Cu, Pb, Zn, W, Ni, Co and Mo of the NCC are discussed in the paper. Then different metallogenic systems and their forming processes and geodynamics are discussed in detail. At last, temporal and spatial distribution regularities are summarized and ten favorable ore-control factors on the paleocontinental margins are put forward, including (1) abundance of ore sources; (2) rendezvous of ore-forming fluids; (3) high thermo-dynamic anomaly; (4) remarkable Earth crust-mantle interaction; (5) cluster of macroscopic structures and their long activities; (6) diversity of ore-forming environments; (7) long geohistory; (8) multiforms of critical transitional ore-forming mechanisms; (9) multi-staged and superimposed ore-formation; and (10) suitable preservation condition.
基金financially supported by the National Natural Science Foundation of China(Grant No.41872056)。
文摘The northern margin of the North China Craton(NCC)contains widespread Permian magmatic rocks,but the origin of these rocks remains controversial.This uncertainty hampers us from better understanding of tectonic framework and evolution of the eastern Paleo-Asian Ocean,particularly with respect to its final-stage subduction and closure time.To address these questions,this study presents petrological,zircon U-Pb geochronological,whole-rock geochemical and in situ zircon Hf isotopic data for these Permian mafic intrusions in the northern margin of the NCC.Precise zircon U-Pb dating results indicate that these mafic intrusions were emplaced in the Middle Permian(ca.260 Ma).Geochemically,the studied mafic intrusions have high MgO and transition metals element contents,with high Mg^(#) values,indicating a mantle origin.These mafic intrusions are characterized by enrichments in large ion lithophile elements(LILEs;e.g.,Rb,Ba,and K)and light rare earth elements(LREEs),and depletions in high field strength elements(HFSEs;e.g.,Nb,Ta,and Ti)and heavy rare earth elements(HREEs),indicating that they were formed in a subduction-related setting.These geochemical features,together with zircon ε_(Hf)(t)values(-1.1 to+11.2),indicate that their parental magmas were derived from partial melting of heterogeneous mantle wedge metasomatized by subduction-related fluids,with the contributions of slab sediments.The studied mafic intrusions also show wide range of major and trace elements contents,and variable Mg^(#) values,Eu and Sr anomalies,suggesting that their parental magmas had undergone variable degrees of fractional crystallization.Together with the E-W trending Permian continental arc along the northern margin of the NCC,we confirm that the generation of the Middle Permian mafic intrusions was related to southward subduction of the Paleo-Asian oceanic lithosphere beneath the NCC and the Paleo-Asian Ocean had not closed prior to the Middle Permian.
基金funded by the National Key Research and Development Program of China from the Ministry of Science and Technology of China(Grant No.2017YFC0601301)National Natural Science Foundation of China(Grant No.41472055)the China Geological Survey(Grant No.DD20160201-01)。
文摘The petrology, geochronology and geochemistry of the mafic enclaves in the Mid-Late Triassic Jiefangyingzi pluton from Chifeng area, southern Inner Mongolia, in China are studied to reveal their petrogenetic relationship with the host pluton. Furthermore, the coeval magmatic assemblage and its petrogenesis on the northern margin of the North China craton(NCC) are studied synthetically to elucidate their tectonic setting and the implications for the destruction of the NCC. Zircon U-Pb dating reveals that the mafic enclaves formed at 230.4 ± 2.2 Ma, which is similar to the age of the host pluton. The most basic mafic enclaves belong to weak alkaline rocks, and they display rare earth element(REE) and trace element normalized patterns and trace element compositions similar to those of ocean island basalt(OIB). In addition, they have positive εNd(t) values(+3.84 to +4.94) similar to those of the Cenozoic basalts on the northern margin of the NCC. All of these geochemical characteristics suggest that the basic mafic rocks originated from the asthenosphere. Petrological and geochemical studies suggest that the Jiefangyingzi pluton and the intermediate mafic enclaves were formed by the mixing of the asthenosphere-derived and crust-derived magmas in different degrees. The Mid-Late Triassic magmatic rocks on the northern margin of the NCC could be classified into three assemblages according to their geochemical compositions: alkaline series, weak alkaline–sub-alkaline series and sub-alkaline series rocks. Petrogenetic analyses suggest that the upwelling of the asthenosphere played an important role in the formation of these Mid-Late Triassic magmatic rocks. Basing on an analysis of regional geological data, we suggest that the northern margin of the NCC underwent destruction due to the upwelling of the asthenosphere during the Mid-Late Triassic, which was induced by the delamination of the root of the collisional orogeny between Sino-Korean and Siberian paleoplates in Late Permian.
基金financially supported by the Ph.D Foundation of the Ministry of Education of China(grant No.20133402130008)the National Basic Research Program of China(grant No.2015CB856104)the National Natural Science Foundation of China(grant No.41273036)
文摘The Precambrian basement rocks in the Bengbu and neighboring areas, located at the southeastern margin of the North China Craton, occur as granulite terrains and xenoliths in the Mesozoic dioritic porphyry.
基金supported by the National Nature Science Foundation of China(grant No.U1504405)
文摘Objective Indosinian magmatic rocks mainly locate in west Qinling Orogen, which are, however, extremely rare in east Qingling Orogen (Lu Xinxiang, 2000; Zhang Guowei et al., 2001; Guo Xianqing et al., 2017). The Zhifang Huangzhuang (ZH) area in south Songxian County is located in the southern margin of the North China Craton (Fig. l a), which is an important lndosinian alkaline magmatic occurrence including 32 syenite bodies and syenitic dykes in east Qinling Orogen. There are five syenite bodes in the ZH area, i.e., the Lang'aogou, Mogou, Longtou, Jiaogou and Wusanggou from west to east (Fig. l b).
基金supported by the NSFC (41373039)the DREAM project of MOST, China (2016YFC0600403)
文摘1 Introduction Voluminous Mesozoic magmatic rocks containing abundant Au-Mo polymetallic mineralization resources are developed in the Xiaoqinling-Xiong’ershan district of the southern margin of the North China Craton(NCC).
基金This work was supported financially by Beijing Natural Science Foundation(8194073)the Science Foundation of China University of Petroleum,Beijing(2462017YJRC032 and 2462021YXZZ004)+1 种基金the Science Foundation of State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum,Beijing(PRP/indep-4-1702)the National Natural Science Foundation of China(41872057 and 42002238).
文摘The Cenozoic basalts with OIB-affinity in northern marginal region of the North China Craton are thought to experience minor even no crustal contamination during the magma evolution.The whole-rock Sr-Nd-Pb-Hf isotopes are attributed to a two-component mixing between depleted and enriched mantle sources,while the major element variations are controlled by the fractional crystallization of olivine and clinopyroxene.However,in this study,the new Os isotopic data proposes an opposite model for the Cenozoic basalts in northern marginal region of the North China Craton.In this model,the Jining basalts were contaminated by the Archean mafic rocks during the magma storage and ascent.The crustal contamination process is supported by(1)the highly radiogenic Os isotopic compositions,and(2)the positive correlation between 187Os/188Os and 1/Os of the Jining basalts.By modeling the Os isotopic composition of the basalts,an incorporation of<10%mafic granulites/amphibolites to the parental magma can successfully explain the initial values of highly radiogenic Os.In contrast,the unradiogenic and uniform Os isotopic compositions of the Chifeng basalts suggest negligible crustal contamination.Os isotopic data acts as an indicator of crustal contamination during magma evolution,providing us a novel insight into the evolution of the intra-continental OIB-like basalts worldwide.
基金supported by the National Natural Science Foundation of China(Grant Nos.41888101,41890834,91755213)the Most Special Fund(MSFGPMR02-3)from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhana contribution to the IUGS International Lithosphere Program(2023-TF1)“Formation,Character,History and Behavior of Earth’s Oldest Lithospheres”。
文摘Geological maps encode vast amounts of data about rock types,ages,chemistry,orogenic architecture and deep-time history or different tectonic units,yet these are often difficult to extract because of the way different geologists portray their results at various scales.To understand orogenesis in 4D,it is essential to uniformly integrate map data,together with geophysical data and deep geochemical mapping(Wang et al.,2023).
文摘North China is one of the high-risk areas for destructive strong earthquakes in China's Mainland, with a history of numerous significant seismic events. On August 6, 2023, an Mw5.5 earthquake struck Pingyuan County, Dezhou City, in Shandong Province, China. This earthquake was the largest in the eastern North China Craton(NCC) since the Tangshan earthquake of 1976. Due to the absence of surface ruptures, the fault responsible for the Pingyuan Mw5.5 earthquake remains unclear. To reveal the subsurface geological structure near the earthquake epicenter, this study utilized highresolution two-dimensional seismic reflection profiles to interpret pre-existing faults.
基金jointly supported by the National Natural Science Foundation of China(4220207742103025)+5 种基金the Opening Foundation of MNR Key Laboratory of Metallogeny and Mineral Assessment(ZS2209ZS2106)the Opening Foundation of Key Laboratory of Mineral Resources in Western China(Gansu Province)(MRWCGS-2021-01)the Natural Science Foundation of Gansu Province(22JR5RA440)the Fundamental Research Funds for the Central Universities(LZUJBKY-2022-42)the Guiding Special Funds of“Double First-Class(First-Class University&First-Class Disciplines)”(561119201)of Lanzhou University,China。
文摘Porphyry Cu(Mo-Au)deposit is one of the most important types of copper deposit and usually formed under magmatic arc-related settings,whilst the Mujicun porphyry Cu-Mo deposit in North China Craton uncommonly generated within intra-continental settings.Although previous studies have focused on the age,origin and ore genesis of the Mujicun deposit,the ore-forming age,magma source and tectonic evolution remain controversial.Here,this study targeted rutile(TiO_(2))in the ore-hosting diorite porphyry from the Mujicun Cu-Mo deposit to conduct in situ U-Pb dating and trace element composition studies,with major views to determine the timing and magma evolution and to provide new insights into porphyry Cu-Mo metallogeny.Rutile trace element data show flat-like REE patterns characterized by relatively enrichment LREEs and depleted HREEs,which could be identified as magmatic rutile.Rutile U-Pb dating yields lower intercept ages of 139.3–138.4 Ma,interpreted as post magmatic cooling timing below about 500℃,which are consistent or slightly postdate with the published zircon U-Pb ages of diorite porphyry(144.1–141.7 Ma)and skarn(146.2 Ma;139.9 Ma)as well as the molybdenite Re-Os ages of molybdenum ores(144.8–140.0 Ma).Given that the overlap between the closure temperature of rutile U-Pb system and ore-forming temperature of the Mujicun deposit,this study suggests that the ore-forming ages of the Mujicun deposit can be constrained at 139.3–138.4 Ma,with temporal links to the late large-scale granitic magmatism at 138–126 Ma in the Taihang Orogen.Based on the Mg and Al contents in rutile,the magma of ore-hosting diorite porphyry was suggested to be derived from crust-mantle mixing components.In conjunction with previous studies in Taihang Orogen,this study proposes that the far-field effect and the rollback of the subducting Paleo-Pacific slab triggered lithospheric extension,asthenosphere upwelling,crust-mantle interaction and thermo-mechanical erosion,which jointly facilitated the formation of dioritic magmas during the Early Cretaceous.Subsequently,the dioritic magmas carrying crust-mantle mixing metallic materials were emplaced and precipitated at shallow positions along NNE-trending ore-controlling faults,eventually resulting in the formation of the Mujicun Cu-Mo deposit within an intracontinental extensional setting.
基金financially supported by the project of the China Geological Survey(DD20230292,DD20242591)。
文摘The Dongping deposit is the largest alkalic-hosted gold deposit in China containing>100 t of Au.This paper presents a new understanding for Dongping ore system,based on the previous studies.The mineralization originally occurred at 400-380 Ma,simultaneous with emplacement of the Shuiquangou alkaline complex,and was overprinted by the hydrothermal activity in the Yanshanian.Isotope compositions of ores indicate metals of the deposit are mainly provided by the Shuiquangou complex.Ore-forming fluids are characterized by increasing oxygen fugacity and decreasing sulfur fugacity,while tellurium fugacity increased in the Stage II-2 and decreased in Stage II-3.These systematic changes are closely related to the processes of mineral precipitation and fluid evolution.Sulfide precipitation from Stage Ⅰ to Stage Ⅱ was triggered by fluid boiling,which leads to the precipitation of Pb-Bi-Te,due to decrement of sulfur fugacity.Condensation of gas phase containing high concentration of H_2Te leads to precipitation of Te-Au-Ag minerals and native tellurium.Based on these hypotheses,this paper present a polyphase metallogenic model as follow.During the Devonian,fluids were released from alkaline magmas,which carried ore-forming materials form the surrounding rocks and precipitate the early ores.During the Jurassic-Cretaceous,fluorine-rich fluids exsolved from highly factionated Shangshuiquan granite,which extracted and concentrated Au from the Shuiquangou complex and the Sanggan Group metamorphic rocks,and finally formed the Dongping gold deposit.
基金financially supported by the National Key Research and Development Program of China(Nos.2018YFC0603702,2017YFC0601301)the Open Fund from Sino Probe Laboratory(No.Sinoprobe Lab 202223)+2 种基金the National Natural Science Foundation of China(Nos.92162322,41372077,and U1403291)China Geological Survey(Nos.DD20190685,DD20160024,DD20160123,and DD20160345)IGCP Project 662。
文摘The North China Craton(NCC)is one of the most complex cratons in the world.It underwent a series of tectonothermal events during the Neoarchean-Paleoproterozoic.The petrogenesis of potassic granitoids,the timing,and the style of Archean crustal growth are still debated.Systematic field and petrological stdudies on the potassic meta-granites from the Guyang-Chayouzhongqi region were carried out.New U-Pb ages,zircon Lu-Hf isotopic analyses,and whole-rock geochemical data were obtained.Two groups(~2.7 Ga and~2.5 Ga)of potassic meta-granites were recognized.The~2.7 Ga meta-granites are mainly A2-type,with variableεHf(t)values(-8.4 to+3.3)and Archean one stage model ages(T_(DM)=~3.0 Ga),indicating that their source was derived from ancient anatectic TTG-like granite and depleted mantle,which suggests that thin crust had formed in the Guyang-Chayouzhongqi region by~3.0 Ga.Similar to the K-rich granites in the NCC,most of the~2.5 Ga potassic meta-granites are typical of A1-type granite,and are enriched in Sm and Gd and depleted in Nb,Ta,P,and Ti.The ages and isotopic data indicate that the~2.5 Ga meta-granites were generated from juvenile crustal sources with Neoarchean TTGs.The overall zircon U-Pb and Hf isotopic data furthermore suggested that the~2.7 Ga event is the most important stage of magmatic accretion in the NCC,similar to other cratons.In contrast,reworking or metamorphic alteration was the main crustal process in the NCC at~2.5 Ga.