The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the p...The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.展开更多
The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidite...The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.展开更多
Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China...Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.展开更多
Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion or...Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.展开更多
The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence ...The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence of gabbro and diorite, pillow and massive lavas, diabase and chert. Ages of 1840±2 Ma, 1783±2 Ma and 1784±2 Ma on three zircons from diabase, indicate an early Middle Proterozoic age. The diabases and basalts show light rare-earth element enrichment and have relatively high TiO2 contents, characteristic of ocean island basalts. All of the lavas have low MgO, Cr, Ni contents and Mg numbers indicating a more evolved character. They are believed to have been derived from a more mafic parental magma by fractionation of olivine, Cr-spinel and minor plagioclase. Based on the lava geochemistry and regional geology, the Aoyougou ophiolite was probably believed to have formed at a spreading centre in a small marginal basin. Subduction of the newly formed oceanic lithosphere in the Middle Proterozoic produced a trench-arc-basin system, which is preserved in the North Qilian Mountains.展开更多
After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P...After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.展开更多
The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qili...The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.展开更多
Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot ...Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China.Simultaneously,rainfall,surface runoff,soil-layer flow,mantel-layer flow and soil moisture are monitored respectively.From the results,it is found that the hydrographs in all layers have the characteristics of rapid rise and fall.The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow.Surface flow,the main contributor,makes up more than 60% of the total runoff in the study area.It even exceeds 90% in the cases of high intensity rainfall events.Runoff coefficient(ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount,rainfall intensity and antecedent soil moisture,and the relationship can be well expressed by a multiple linear regression function α = 0.002P + 0.182i + 4.88Wa-0.821.The relation between the rainfall intensity and the lag time of three flows(surface runoff,soil-layer flow and mantel-layer flow) is shown to be exponential.Then,the result also shows that the recession constant is 0.75 for surface runoff,is 0.94 for soil-layer and mantel-layer flow in this area.In this study area,the dominant infiltration excess runoff is simulated by Horton model.About 0.10 mm/min percolation is observed under the condition of different rainfall intensities,therefore the value is regarded as the steady infiltration rate of the study area.展开更多
This paper summarizes the history of tectono magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic...This paper summarizes the history of tectono magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic ocean basin opening and closing, the large scale marine volcanism and massive sulfide deposits controlled by sea floor hydrothermal circulation systems are the two sharpest features in the geological developing history of the orogenic belt, which are also the most two important aspects related to each other and should be given a special attention in the geological studies in the region.展开更多
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends o...The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.展开更多
The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is...The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is put forward for deriving the information about the natural change of the ecology in arid areas, and the relationship between the climate change trend and the corresponding ecological response on the northern slope of the Tianshan Mountains since recent 40 years is analyzed from the scales of the land cover ecosystems and landscapes based on the observed data of climate, hydrology, modern glaciers and lakes on the northern slopes of the Tianshan Mountains since recent 40 years and the satellite RS data since recent 10 years by using the RS and GIS technologies. The results are as follows: (1) The overall trend of climate change on the northern slope of the Tianshan Mountains since recent 40 years is that both air temperature and precipitation are increased, especially the increase amplitudes of air tempera-ture, precipitation and annual runoff volume are high since the decade of the 1990s; (2) the in-tegrated indexes of the vegetation in all the geographical divisions on the northern slope of the Tianshan Mountains are obviously increased since recent 10 years, especially in the artificial oases and the foothill belts, such a change trend is advantageous for improving the vegetation ecology; and (3) the vegetation ecology in the arid areas is extremely sensitive to the climate change, the vegetation coverage and the biomass on the northern slope of the Tianshan Moun-tains are continuously increased because of the climate change since recent 10 years, their in-crease amplitudes in the plains and during the late stage are obviously higher than that in the mountainous regions and during the early stage.展开更多
Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best ...Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best single correlation coefficient is 0.74,with significance level of 0.0001. Using two residual chronologies collected from west Baiyanggou and Boerqingou,precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains,its explained variance is 62%.According to much verification from independent precipitation data,historical climate records,glacier and other data.it shows that the reconstructed precipitation series of 348 years is reliable.Analysis of precipitation features indicates that there were three wet periods occurring during 1671(?)—1692,1716—1794 and 1825—1866 and three dry periods during 1693 —1715,1795—1824 and 1867—1969.Two wet periods,during 1716—1794 and 1825—1866, correspond to the times of the second and the third glacial terminal moraine formation,which is in front of No.1 glacier in Urumqi River source.According to computation,corresponding annual precipitation amounts are 59mm and 30mm more than now.The reconstructed precipitation series has a significant drying trend from 1716 to 1969.and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.展开更多
Cathodoluminescence (CL) imaging and ion microprobe (SHRIMP) U-Pb dating were carried out for zircons from eclogites in the North Qilian Mountains. The results show weighted mean ages of 463 6 Ma and 468 13 Ma for two...Cathodoluminescence (CL) imaging and ion microprobe (SHRIMP) U-Pb dating were carried out for zircons from eclogites in the North Qilian Mountains. The results show weighted mean ages of 463 6 Ma and 468 13 Ma for two samples, respectively. These ages are the earliest record of Caledonian high-pressure metamorphism in the North Qilian Mountains, and they may represent the timing of eclogite-facies metamorphism when the oceanic crust was subducted to mantle depths in this orogenic belt.展开更多
The Jiugequan ophiolite is one of the representative ophiolite fragments in the Early Paleozoic orogenic belt of the North Qilian Mountain.It has been drawn much attention and extensively studied in recent years.In th...The Jiugequan ophiolite is one of the representative ophiolite fragments in the Early Paleozoic orogenic belt of the North Qilian Mountain.It has been drawn much attention and extensively studied in recent years.In this study,ion microprobe(SHRIMP) U-Pb dating was carried out for zircons from isotropic gabbro from the Jiugequan ophiolite.Eighteen analyses yield a relatively consistent apparent 206Pb/238U ages from 480 to 508 Ma with a weighted mean age of 490±5 Ma(MSWD=1.06),which is believed to be the crystallization age of the gabbro and thus the forming age of the Jiugequan ophiolite.Major and trace element geochemical study indicates that the diabase-basalts from the Jiugequan ophiolite have N-MORB and E-MORB characteristics with some subduction-related signatures.The petrological,geochemical and chronological data enable us to conclude that the Jiugequan ophiolite is most likely to be formed at a spreading center of back-arc basin during the early Ordovician,while the ancient Qilian oceanic plate subducted northwards.The acquisition of forming age and determination of tectonic setting for Jiugequan ophiolite provide significant constraints on the evolution of intra-oceanic subduction system in the North Qilian orogenic belt during the Early Paleozoic era.展开更多
Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechani...Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechanisms of climate change,actively adapting to climate change,pursuing rational development,and protecting the ecological environment.Taking the north slope of Tianshan Mountains,located in the arid area of northwestern China and extremely sensitive to climate change,as the research area,this study retrieves the surface temperature of the mountain based on MODIS data,while characterizing the intensity of human activities thereby data on the night light,population distribution and land use.The evolution characteristics of human activity intensity and surface temperature in the study area from 2000 to 2018 were analyzed,and the spatio-temporal correlation between them was further explored.It is found that:(1)The average human activity intensity(0.11)in the research area has kept relatively low since this century,and the overall trend has been slowly rising in a stepwise manner(0.0024·a-1);in addition,the increase in human activity intensity has lagged behind that in construction land and population by 1-2 years.(2)The annual average surface temperature in the area is 7.18℃with a pronounced growth.The rate of change(0.02℃·a-1)is about 2.33 times that of the world.The striking boost in spring(0.068℃·a-1)contributes the most to the overall warming trend.Spatially,the surface temperature is low in the south and high in the north,due to the prominent influence of the underlying surface characteristics,such as elevation and vegetation coverage.(3)The intensity of human activity and the surface temperature are remarkably positively correlated in the human activity areas there,showing a strong distribution in the east section and a weak one in the west section.The expression of its spatial differentiation and correlation is comprehensively affected by such factors as scopes of human activities,manifestations,and land-use changes.Vegetation-related human interventions,such as agriculture and forestry planting,urban greening,and afforestation,can effectively reduce the surface warming caused by human activities.This study not only puts forward new ideas to finely portray the intensity of human activities but also offers a scientific reference for regional human-land coordination and overall development.展开更多
基金financially supported by the National Key Research and Development Program Project (2017YFC0404304)the National Natural Science Foundation of China (41361005)。
文摘The ecology of Qilian Mountains has been seriously threatened by uncontrolled grazing and wasteland reclamation. This study examined the ecological changes on the southern slope of Qilian Mountains in China from the perspective of water conservation by classifying different clusters of water conservation functional areas to efficiently use limited human resources to tackle the water conservation protection problem. In this study, we used Integrate Valuation of Ecosystem Services and Tradeoffs(InVEST) model to estimate water conservation and analyzed the factors that influence the function. The results of this study include:(1) from 2000 to 2015, the water conservation of the southern slope of Qilian Mountains generally showed an increasing trend, and the total water conservation in 2015 increased by 42.18% compared with that in 2000.(2) Rainfall, fractional vegetation cover(FVC), and evapotranspiration have the most significant influence on the water conservation of the study area. Among them, water conservation is positively correlated with rainfall and FVC(P<0.05) and negatively correlated with evapotranspiration(P<0.05).(3) The importance level of water conservation functional areas gradually increases from northwest to southeast, and the region surrounding Menyuan Hui Autonomous County in the southeast of the southern slope of Qilian Mountains is the core water conservation functional area. And(4) the study area was divided into five clusters(Cluster Ⅰ–Cluster Ⅴ) of water conservation, with the areas of Clusters Ⅰ through Ⅴ accounting for 0.58%, 13.74%, 41.23%, 32.43%, and 12.01% of the whole study area, respectively.
文摘The Ordovician Laohushan ophiolite, located in the eastern part of the North Qilian Mountains, is mainly composed of meta-peridotites, gabbros and basalts alternating with sediments. The sediments are mainly turbidites, including sandstones, siltstones, cherts etc. Major elements show that the basalts are subalkaline tholeiites and may be analogous to ocean-floor basalts. Except a few N-MORBs, most of the basalts are E-MORBs as indicated by incompatible element ratios such as (La/Ce)N, La/Sm, Ce/Zr, Zr/Y and Zr/Nb. Negative Nb anomaly is common but negative Zr, Hf and Ti anomalies are quite rare. Based on the geochemical characteristics, it is suggested that the Laohushan basalts were formed in a back-arc basin. ENd (t) of the basalts ranges between +3.0 and +8.9 and (87Sr/86Sr), ranges between 0.7030 and 0.7060, indicating a depleted mantle source which was mixed with more or less enriched mantle components. Furthermore, the petrography of the sandstones and geochemistry of the cherts suggest that the sediments were deposited near a continental margin.
基金This research was supported by the National Natural Science Foundation of China grant 49372136.
文摘Abstract: This paper discusses in detail the deformation textures, glide system, petrofabrics and olivine dislocation microstructures of mantle peridotites at Yushigou in the North Qilian Mountains, northwestern China. The peridotites have undergone high-pressure, high-temperature and low-strain rate plastic flow deformation. According to the dynamic recrystallized-grain size of olivine and the average spacing between the dislocation walls as well as the chemical composition of enstatite, the authors calculated the rheological parameters of the ancient upper mantle in the study area as follows: temperatures 1025–1093°C; pressures 3043–4278 MPa; depths 95–132 km; deviatoric stress 28–32 MPa; strain rates 0.2×10?14-2.13×10?14s?1 and equivalent viscosities 0.45×1020-4.65×1020 Pa ? s. These parameters suggest that the position where plastic flow took place was correspondent to the lowvelocity zone beneath the oceanic lithosphere and that oceanization characterized by middle-velocity (1–3 cm/a) sea-floor spreading took place in the North Qilian Mountains during the Early Palaeozoic.
基金a part of research results of a state key research project(No.G1999043200)
文摘Zircons from granodiorite and biotite granite in the Yeniutan granitic intrusion in the western North Qilian Mountains yielded a weighted mean 206Pb/238U apparent age of 460±3 Ma, suggesting that the intrusion originated during the late stage of plate subduction. Its related Ta'ergou and Xiaoliugou deposits are two of the few large tungsten deposits formed in the plate subduction environment in the world. The U-Pb dating of the zircons from the biotite granite gave a discordant lower intercept age of 183±4 Ma, which implies that the Yanshanian event was probably superimposed on the North Qilian region.
基金part of a larger project involving an investigation of ore deposits in the western part of the North Qilian Mountains funded by the National Planning Economic Commission of ChinaIt is also part result of the National Key Fundamental Research Project(G1999043205)financially supported by the Ministry of National Science and Technology.
文摘The Aoyougou ophiolite lies in an early Palaeozoic orogenic belt of the western North Qilian Mountains, near the Aoyougou valley in Gansu Province, northwestern China. It consists of serpentinite, a cumulate sequence of gabbro and diorite, pillow and massive lavas, diabase and chert. Ages of 1840±2 Ma, 1783±2 Ma and 1784±2 Ma on three zircons from diabase, indicate an early Middle Proterozoic age. The diabases and basalts show light rare-earth element enrichment and have relatively high TiO2 contents, characteristic of ocean island basalts. All of the lavas have low MgO, Cr, Ni contents and Mg numbers indicating a more evolved character. They are believed to have been derived from a more mafic parental magma by fractionation of olivine, Cr-spinel and minor plagioclase. Based on the lava geochemistry and regional geology, the Aoyougou ophiolite was probably believed to have formed at a spreading centre in a small marginal basin. Subduction of the newly formed oceanic lithosphere in the Middle Proterozoic produced a trench-arc-basin system, which is preserved in the North Qilian Mountains.
文摘After the integration of petrographic study, geothermobarometry and Gibbs method, the synthetic P-T paths for the rocks from different geological profiles in the North Qilian, China, have been derived. The composite P-T paths from different methods indicate that all the high-pressure rocks in the Qilian area recorded P-T paths with clockwise loops starting at the blueschist facies, later reaching peak metamorphism at the blueschist facies, eclogite fades or epidote-amphibolite facies and ending up with the greenschist facies. The incremental Ar-Ar dating shows that the plateau ages for the high-pressure rocks range from 410 to 443 Ma. The plateau ages could be used as a minimum age constraint for the subduction that resulted in the formation of these high-pressure rocks in the Qilian area. It is proposed that the late-stage decompressional and cooling P-T paths with ends at the greenschist facies for these high-pressure rocks probably reflect the uplift process which could occur after shifting the arc-trench tectonic system to the system of continental orogenic belts. The retrograde paths for the high-pressure rocks in the North Qilian tectonic belt are characterized by dramatic decompression with slight cooling, which suggests very rapid exhumation. Petrography supports that the mountain-building for the Qilian mountain range could undergo a very fast process which caused rapid uplift and denudation.
基金TheresearchissponsoredbytheNationalNaturalScienceFoundationofChina (No .4 9972 0 78)
文摘The Late Caledonian to Early Hercynian North Qilian orogenic belt in no rthwestern China is an elongate tectonic unit situated between the North China p late in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to L ate Silurian shallow marine to tidal flat deposits and the Early and Middle Devo nian terrestrial molasse are developed along the corridor Nanshan. The shallowin g upward succession from subabyssal flysch, shallow marine, tidal flat to terre strial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stag e during the Silurian and Devonian time.
基金National Natural Science Foundation of China,No.40371025
文摘Simulated rainfall is a valid tool to examine the runoff generation on the slope.13 simulated rainfall experiments with different rainfall intensities and durations are completed in a 5 m ×10 m experimental plot in mountainous area of North China.Simultaneously,rainfall,surface runoff,soil-layer flow,mantel-layer flow and soil moisture are monitored respectively.From the results,it is found that the hydrographs in all layers have the characteristics of rapid rise and fall.The recessions of surface flow and soil-layer flow are much faster than that of mantel-layer flow.Surface flow,the main contributor,makes up more than 60% of the total runoff in the study area.It even exceeds 90% in the cases of high intensity rainfall events.Runoff coefficient(ratio of total runoff to rainfall amount) is mainly influenced by rainfall amount,rainfall intensity and antecedent soil moisture,and the relationship can be well expressed by a multiple linear regression function α = 0.002P + 0.182i + 4.88Wa-0.821.The relation between the rainfall intensity and the lag time of three flows(surface runoff,soil-layer flow and mantel-layer flow) is shown to be exponential.Then,the result also shows that the recession constant is 0.75 for surface runoff,is 0.94 for soil-layer and mantel-layer flow in this area.In this study area,the dominant infiltration excess runoff is simulated by Horton model.About 0.10 mm/min percolation is observed under the condition of different rainfall intensities,therefore the value is regarded as the steady infiltration rate of the study area.
文摘This paper summarizes the history of tectono magmatic evolution, the types and backgrounds of mineralization prior to the orogenic period of North Qilian Mountains. It points out that: during the process of Paleozoic ocean basin opening and closing, the large scale marine volcanism and massive sulfide deposits controlled by sea floor hydrothermal circulation systems are the two sharpest features in the geological developing history of the orogenic belt, which are also the most two important aspects related to each other and should be given a special attention in the geological studies in the region.
基金supported by the funding of the Key Laboratory of Eco-hydrology Open FundChinese Academy of Sciences and Knowledge Innovation Program of the Chinese Academy of Sciences, No.KZCX2-YW-328
文摘The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoffwere analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis, Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Ummqi River and Kaidu River Basins Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Ummqi River Basin.
基金the important orientation program of the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX3-SW-327).
文摘The Tianshan Mountains is a high and huge mountain body lying across the central part of Xinjiang, China, and is also the main area where the runoff forms in Xinjiang. In this paper, a set of RS-based study methods is put forward for deriving the information about the natural change of the ecology in arid areas, and the relationship between the climate change trend and the corresponding ecological response on the northern slope of the Tianshan Mountains since recent 40 years is analyzed from the scales of the land cover ecosystems and landscapes based on the observed data of climate, hydrology, modern glaciers and lakes on the northern slopes of the Tianshan Mountains since recent 40 years and the satellite RS data since recent 10 years by using the RS and GIS technologies. The results are as follows: (1) The overall trend of climate change on the northern slope of the Tianshan Mountains since recent 40 years is that both air temperature and precipitation are increased, especially the increase amplitudes of air tempera-ture, precipitation and annual runoff volume are high since the decade of the 1990s; (2) the in-tegrated indexes of the vegetation in all the geographical divisions on the northern slope of the Tianshan Mountains are obviously increased since recent 10 years, especially in the artificial oases and the foothill belts, such a change trend is advantageous for improving the vegetation ecology; and (3) the vegetation ecology in the arid areas is extremely sensitive to the climate change, the vegetation coverage and the biomass on the northern slope of the Tianshan Moun-tains are continuously increased because of the climate change since recent 10 years, their in-crease amplitudes in the plains and during the late stage are obviously higher than that in the mountainous regions and during the early stage.
基金funded by Xinjiang Science and Technology Commission(980103002)by the National Key Project for Basic Research(G199043501)+1 种基金by the foundation of the open laboratory of National Climate Center,China Meteorological Administrationby the foundation of Observation and Experiment Station of Tianshan Mountain Glacier,Chinese Academy of Seienecs.
文摘Correlation census shows that the correlation between the tree-ring chronologies in the Urumqi River Basin and precipitation during July in the last year to February in the concurrent year is significant,and the best single correlation coefficient is 0.74,with significance level of 0.0001. Using two residual chronologies collected from west Baiyanggou and Boerqingou,precipitation for 348 years can be reconstructed in the North Slope of middle Tianshan Mountains,its explained variance is 62%.According to much verification from independent precipitation data,historical climate records,glacier and other data.it shows that the reconstructed precipitation series of 348 years is reliable.Analysis of precipitation features indicates that there were three wet periods occurring during 1671(?)—1692,1716—1794 and 1825—1866 and three dry periods during 1693 —1715,1795—1824 and 1867—1969.Two wet periods,during 1716—1794 and 1825—1866, correspond to the times of the second and the third glacial terminal moraine formation,which is in front of No.1 glacier in Urumqi River source.According to computation,corresponding annual precipitation amounts are 59mm and 30mm more than now.The reconstructed precipitation series has a significant drying trend from 1716 to 1969.and has better representativeness to the precipitation of Urumqi and Changji Prefecture on the North Slope of Tianshan Mountains.
文摘Cathodoluminescence (CL) imaging and ion microprobe (SHRIMP) U-Pb dating were carried out for zircons from eclogites in the North Qilian Mountains. The results show weighted mean ages of 463 6 Ma and 468 13 Ma for two samples, respectively. These ages are the earliest record of Caledonian high-pressure metamorphism in the North Qilian Mountains, and they may represent the timing of eclogite-facies metamorphism when the oceanic crust was subducted to mantle depths in this orogenic belt.
基金supported by the National Natural Science Foundation of China (40773012,40825007 and 40821002)the National Basic Research Program of China (2009CB825007)
文摘The Jiugequan ophiolite is one of the representative ophiolite fragments in the Early Paleozoic orogenic belt of the North Qilian Mountain.It has been drawn much attention and extensively studied in recent years.In this study,ion microprobe(SHRIMP) U-Pb dating was carried out for zircons from isotropic gabbro from the Jiugequan ophiolite.Eighteen analyses yield a relatively consistent apparent 206Pb/238U ages from 480 to 508 Ma with a weighted mean age of 490±5 Ma(MSWD=1.06),which is believed to be the crystallization age of the gabbro and thus the forming age of the Jiugequan ophiolite.Major and trace element geochemical study indicates that the diabase-basalts from the Jiugequan ophiolite have N-MORB and E-MORB characteristics with some subduction-related signatures.The petrological,geochemical and chronological data enable us to conclude that the Jiugequan ophiolite is most likely to be formed at a spreading center of back-arc basin during the early Ordovician,while the ancient Qilian oceanic plate subducted northwards.The acquisition of forming age and determination of tectonic setting for Jiugequan ophiolite provide significant constraints on the evolution of intra-oceanic subduction system in the North Qilian orogenic belt during the Early Paleozoic era.
基金National Natural Science Foundation of China(41461086)National Natural Science Foundation of China(41761108)。
文摘Research on the spatio-temporal correlation between the intensity of human activities and the temperature of earth surfaces is of great significance in many aspects,including fully understanding the causes and mechanisms of climate change,actively adapting to climate change,pursuing rational development,and protecting the ecological environment.Taking the north slope of Tianshan Mountains,located in the arid area of northwestern China and extremely sensitive to climate change,as the research area,this study retrieves the surface temperature of the mountain based on MODIS data,while characterizing the intensity of human activities thereby data on the night light,population distribution and land use.The evolution characteristics of human activity intensity and surface temperature in the study area from 2000 to 2018 were analyzed,and the spatio-temporal correlation between them was further explored.It is found that:(1)The average human activity intensity(0.11)in the research area has kept relatively low since this century,and the overall trend has been slowly rising in a stepwise manner(0.0024·a-1);in addition,the increase in human activity intensity has lagged behind that in construction land and population by 1-2 years.(2)The annual average surface temperature in the area is 7.18℃with a pronounced growth.The rate of change(0.02℃·a-1)is about 2.33 times that of the world.The striking boost in spring(0.068℃·a-1)contributes the most to the overall warming trend.Spatially,the surface temperature is low in the south and high in the north,due to the prominent influence of the underlying surface characteristics,such as elevation and vegetation coverage.(3)The intensity of human activity and the surface temperature are remarkably positively correlated in the human activity areas there,showing a strong distribution in the east section and a weak one in the west section.The expression of its spatial differentiation and correlation is comprehensively affected by such factors as scopes of human activities,manifestations,and land-use changes.Vegetation-related human interventions,such as agriculture and forestry planting,urban greening,and afforestation,can effectively reduce the surface warming caused by human activities.This study not only puts forward new ideas to finely portray the intensity of human activities but also offers a scientific reference for regional human-land coordination and overall development.