A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At presen...A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At present,most studies on this set of formations have focused on the reservoir characteristics and reservoir formation mechanism of the shales,and basic studies on the palaeoenvironment and organic matter(OM)enrichment mechanism have not been fully carried out.In this paper,we recovered the sedimentary palaeoenvironment by mineralogical,elemental geochemical and organic geochemical analyses,and explored the enrichment mechanism of OM under the constraints of palaeoenvironmental evolution.The shales can be divided into two stages of sedimentary evolution:compared with the shales of the Lower Longtan Formation,the shales of the Upper Longtan Formation are relatively rich in quartz,poor in clay and carbonate minerals,and the OM type changes from typeⅢto typeⅡ_(2).The depositional environment has undergone a change from sea level rise,from warm and wet climate to dry and cold climate,and from oxygen-poor condition restricted to open reduction environment;the land source input has decreased,the siliceous mineral content has increased,the biological productivity has improved,and the deposition rate has changed from high to low.A depositional model was established for the shales of the Longtan Formation,reflecting the differential reservoir formation pattern of organic matter.For the Lower Longtan Formation shales,the most important factors controlling OM content are terrestrial source input and deposition rate,followed by paleoclimate and paleooxygen conditions.For the Upper Longtan Formation shales,the most important controlling factor is paleo-productivity,followed by sedimentation rate.The depositional model constructed for the Upper and Lower Longtan Formation shales can reproduce the enrichment of organic matter and provide a basis for later exploration and development.展开更多
The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef do...The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef dolomites and their origins have been major research topics for sedimentologists and oil & gas geologists. The petrography, trace element and isotope geochemistry of the reef dolomites indicated that the dolomites are characterized by low Sr and Mn contents, relatively low Fe contents, very similar δ13C and 6180 values and very different 87Sr/86Sr ratios. Although the calculated results of the fluid mixing suggested that a mixture with 85%-95% meteoric water and 50/o- 15% seawater seemed to be the dolomitizing fluids of the reef dolomites, the low Mn contents, relatively low Fe contents, high δ13c values and high homogenization temperatures of the dolomites did not support that there were large proportions of meteoric water in the dolomitization process, and the 87Sr/86Sr ratios which were close to coeval seawater also did not support the possibility of the mixture of deep-burial circulated fluids from clastic rocks. High temperature deep-burial circulated seawater with low Mn and Fe contents, high Sr content and high δ13C values from the dissolution of widely distributed Triassic evaporites during the burial diagenetic processes (including dehydration of water-bearing evaporites) could have been the dolomitizing fluids of the reef dolomites.展开更多
The discovery of natural gas reservoirs from the Triassic Feixianguan Formation in the Northeastern Sichuan Basin is an important breakthrough in the field of marine carbonate rocks for Chinese oil and gas exploration...The discovery of natural gas reservoirs from the Triassic Feixianguan Formation in the Northeastern Sichuan Basin is an important breakthrough in the field of marine carbonate rocks for Chinese oil and gas exploration in recent years.Because of the dolomite-hosted reservoirs in the Feixianguan Formation,these dolomites and their formation mechanisms have been a research focus for sedimentary geologists and petroleum geologists.Based on the homogenization temperatures of fluid inclusions,oxygen isotopic composition and their calculated temperatures,and the burial and thermal history of the typical well,it is considered that the majority of dolomites are formed by low-temperature dolomitizing fluids in the Triassic Feixianguan Formation,Northeastern Sichuan Basin.Only a minority of dolomites are formed by high-temperature dolomitizing fluids.The ending depth interval of low-temperature dolomitizing fluids was about 1000-2500 m,of which the correspondingly ending timing interval was approximately from early-middle Middle Triassic to early-middle Late Triassic.The main depth interval of high-temperature dolomitizing fluids was about 3200-4500 m,of which the correspondingly main timing interval was approximately early-middle Middle Jurassic.The low-temperature and high-temperature dolomitizing fluids have different meanings to the formation and evolution of the pore volumes of dolomite reservoirs in the Feixianguan Formation,Northeastern Sichuan Basin.展开更多
The northeastern area of Sichuan Basin, southwestern China, is the area with the maximal reserve of natural gas containing higher hydrogen sulphide (H2S) that has been found among the petroliferous basins of China, wi...The northeastern area of Sichuan Basin, southwestern China, is the area with the maximal reserve of natural gas containing higher hydrogen sulphide (H2S) that has been found among the petroliferous basins of China, with the proven and controlled gas reserve of more than 200 billion cubic meters. These gas pools, with higher H2S contents averaging 9%, some 17%, are mainly distributed on structural belts of Dukouhe, Tieshanpo, Luojiazhai, Puguang, etc., while the oolitic-shoal dolomite of the Triassic Feixianguan Fm. (T1f) is the reservoir. Although many scholars regard the plentiful accumulation of H2S within the deep carbonate reservoir as the re-sult of Thermochemical Sulfate Reduction (TSR), however, the process of TSR as well as its residual geological and geochemical evidence is still not quite clear. Based on the carbon iso-topic analysis of carbonate strata and secondary calcite, etc., together with the analysis of sulfur isotopes within H2S, sulphur, gypsum, iron pyrites, etc., as well as other aspects including the natural gas composition, carbon isotopes of hydrocarbons reservoir petrology, etc., it has been proved that the above natural gas is a product of TSR. The H2S, sulphur and calcite result from the participation of TSR reactions by hydrocarbon gas. During the process for hydrocarbons be-ing consumed due to TSR, the carbons within the hydrocarbon gas participate in the reactions and finally are transferred into the secondary calcite, and become the carbon source of secon-dary calcite, consequently causing the carbon isotopes of the secondary calcite to be lower (?18.2‰). As for both the intermediate product of TSR, i.e. sulfur, and its final products, i.e. H2S and iron pyrites, their sulfur elements are all sourced from the sulfate within the Feixianguan Fm. During the fractional processes of sulfur isotopes, the bond energy leads to the 32S being re-leased firstly, and the earlier it is released, the lower δ 34S values for the generated sulphide (H2S) or sulfur will be. However, for the anhydrite that participates in reactions, the higher the reaction degree, the more 32S is released, while the less 32S remains and the more δ 34S is increased. The testing results have proved the process of the dynamic fractionation of sulfur isotopes.展开更多
It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperatur...It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatures of 177℃ to 220℃. They could be cracked into dry gas (methane), and the same with the source rocks of the Permian and O3w-S1l because they all reached the pyrolysis stage under such conditions. Consequently, the present natural gas (methane) reservoirs were developed.展开更多
Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter r...Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter referred to as Xu2 Member)in the Yuanba area,northern Sichuan Basin,were studied.Combined with the analysis of the main controlling factors of production capacity,the types and characteristics of the sweet spots in the tight sandstone gas reservoir were determined.The evaluation standards and geological models of the sweet spots were established.The results are as follows:(1)There are bedding-parallel fracture-,fault-induced fracture-,and pore-dominated sweet spots in the tight sandstone gas reservoirs of the Xu2 Member.(2)The bedding parallel fracture-dominated sweet spots have developed in quartz sandstones with well-developed horizontal fractures and micro-fractures.They are characterized by high permeability and high gas output during production tests.This kind of sweet spots is thin and shows a limited distribution.Their logging responses show extremely low gamma-ray(GR)values and medium-high AC values.Moreover,the bedding parallel fracture-dominated sweet spots can be mapped using seismic methods.(3)The fault-induced fracture-dominated sweet spots have welldeveloped medium-and high-angle shear fractures.Their logging responses show an increase in peaks of AC values and total hydrocarbon content and a decrease in resistivity.Seismically,the areas with welldeveloped fault-induced fracture-dominated sweet spots can be effectively mapped using the properties such as seismic entropy and maximum likelihood.(4)The pore-dominated sweet spots are developed in medium-grained feldspathic litharenites with good reservoir properties.They are thick and widely distributed.(5)These three types of sweet spots are mainly determined by sedimentation,diagenesis,and tectonism.The bedding parallel fracture-dominated sweet spots are distributed in beachbar quartz sandstones on the top of the 1st sand layer group in the Xu2 Member,which develops in a shore-shallow lake environment.The fault-induced fracture-dominated sweet spots mainly occur near faults.They are increasingly developed in areas closer to faults.The pore-dominated sweet spots are primarily distributed in the 2nd and 3rd sand layer groups,which lie in the development areas of distributary channels near provenances at western Yuanba area.Based on the geological and seismic data,a comprehensive evaluation standard for these three types of sweet spots of the tight sandstone reservoirs in the Xu2 Member has been established,which,on the one hand,lays the foundation for the development and evaluation of the gas reservoir,and on the other hand,deepens the understanding of sweet spot in the tight sandstone gas reservoirs.展开更多
基金the General Fund of the National Natural Science Foundation of China(Grant No.42272184)National Natural Science Foundation of China(Grant Nos.42230311 and 91755215)for their support of this paper。
文摘A set of organic-rich shales of the upper Permian Longtan Formation,which is widely developed in the northeastern part of the Sichuan Basin,is a key formation for the next step of exploration and development.At present,most studies on this set of formations have focused on the reservoir characteristics and reservoir formation mechanism of the shales,and basic studies on the palaeoenvironment and organic matter(OM)enrichment mechanism have not been fully carried out.In this paper,we recovered the sedimentary palaeoenvironment by mineralogical,elemental geochemical and organic geochemical analyses,and explored the enrichment mechanism of OM under the constraints of palaeoenvironmental evolution.The shales can be divided into two stages of sedimentary evolution:compared with the shales of the Lower Longtan Formation,the shales of the Upper Longtan Formation are relatively rich in quartz,poor in clay and carbonate minerals,and the OM type changes from typeⅢto typeⅡ_(2).The depositional environment has undergone a change from sea level rise,from warm and wet climate to dry and cold climate,and from oxygen-poor condition restricted to open reduction environment;the land source input has decreased,the siliceous mineral content has increased,the biological productivity has improved,and the deposition rate has changed from high to low.A depositional model was established for the shales of the Longtan Formation,reflecting the differential reservoir formation pattern of organic matter.For the Lower Longtan Formation shales,the most important factors controlling OM content are terrestrial source input and deposition rate,followed by paleoclimate and paleooxygen conditions.For the Upper Longtan Formation shales,the most important controlling factor is paleo-productivity,followed by sedimentation rate.The depositional model constructed for the Upper and Lower Longtan Formation shales can reproduce the enrichment of organic matter and provide a basis for later exploration and development.
基金supported by the National Natural Science Foundation (41172099,40839908)Research Fund for the Doctoral Program of Higher Education of China(20050616005)
文摘The recent discovery of deep and ultra-deep gas reservoirs in the Permian Changxing Formation reefs, northeastern Sichuan Basin is a significant development in marine carbonate oil & gas exploration in China. Reef dolomites and their origins have been major research topics for sedimentologists and oil & gas geologists. The petrography, trace element and isotope geochemistry of the reef dolomites indicated that the dolomites are characterized by low Sr and Mn contents, relatively low Fe contents, very similar δ13C and 6180 values and very different 87Sr/86Sr ratios. Although the calculated results of the fluid mixing suggested that a mixture with 85%-95% meteoric water and 50/o- 15% seawater seemed to be the dolomitizing fluids of the reef dolomites, the low Mn contents, relatively low Fe contents, high δ13c values and high homogenization temperatures of the dolomites did not support that there were large proportions of meteoric water in the dolomitization process, and the 87Sr/86Sr ratios which were close to coeval seawater also did not support the possibility of the mixture of deep-burial circulated fluids from clastic rocks. High temperature deep-burial circulated seawater with low Mn and Fe contents, high Sr content and high δ13C values from the dissolution of widely distributed Triassic evaporites during the burial diagenetic processes (including dehydration of water-bearing evaporites) could have been the dolomitizing fluids of the reef dolomites.
基金supported by National Natural Science Foundation of China(Grant Nos. 40839908 and 40672072)the Research Fund for the Doctoral Program of Higher Education of China (Grant No.20050616005)
文摘The discovery of natural gas reservoirs from the Triassic Feixianguan Formation in the Northeastern Sichuan Basin is an important breakthrough in the field of marine carbonate rocks for Chinese oil and gas exploration in recent years.Because of the dolomite-hosted reservoirs in the Feixianguan Formation,these dolomites and their formation mechanisms have been a research focus for sedimentary geologists and petroleum geologists.Based on the homogenization temperatures of fluid inclusions,oxygen isotopic composition and their calculated temperatures,and the burial and thermal history of the typical well,it is considered that the majority of dolomites are formed by low-temperature dolomitizing fluids in the Triassic Feixianguan Formation,Northeastern Sichuan Basin.Only a minority of dolomites are formed by high-temperature dolomitizing fluids.The ending depth interval of low-temperature dolomitizing fluids was about 1000-2500 m,of which the correspondingly ending timing interval was approximately from early-middle Middle Triassic to early-middle Late Triassic.The main depth interval of high-temperature dolomitizing fluids was about 3200-4500 m,of which the correspondingly main timing interval was approximately early-middle Middle Jurassic.The low-temperature and high-temperature dolomitizing fluids have different meanings to the formation and evolution of the pore volumes of dolomite reservoirs in the Feixianguan Formation,Northeastern Sichuan Basin.
文摘The northeastern area of Sichuan Basin, southwestern China, is the area with the maximal reserve of natural gas containing higher hydrogen sulphide (H2S) that has been found among the petroliferous basins of China, with the proven and controlled gas reserve of more than 200 billion cubic meters. These gas pools, with higher H2S contents averaging 9%, some 17%, are mainly distributed on structural belts of Dukouhe, Tieshanpo, Luojiazhai, Puguang, etc., while the oolitic-shoal dolomite of the Triassic Feixianguan Fm. (T1f) is the reservoir. Although many scholars regard the plentiful accumulation of H2S within the deep carbonate reservoir as the re-sult of Thermochemical Sulfate Reduction (TSR), however, the process of TSR as well as its residual geological and geochemical evidence is still not quite clear. Based on the carbon iso-topic analysis of carbonate strata and secondary calcite, etc., together with the analysis of sulfur isotopes within H2S, sulphur, gypsum, iron pyrites, etc., as well as other aspects including the natural gas composition, carbon isotopes of hydrocarbons reservoir petrology, etc., it has been proved that the above natural gas is a product of TSR. The H2S, sulphur and calcite result from the participation of TSR reactions by hydrocarbon gas. During the process for hydrocarbons be-ing consumed due to TSR, the carbons within the hydrocarbon gas participate in the reactions and finally are transferred into the secondary calcite, and become the carbon source of secon-dary calcite, consequently causing the carbon isotopes of the secondary calcite to be lower (?18.2‰). As for both the intermediate product of TSR, i.e. sulfur, and its final products, i.e. H2S and iron pyrites, their sulfur elements are all sourced from the sulfate within the Feixianguan Fm. During the fractional processes of sulfur isotopes, the bond energy leads to the 32S being re-leased firstly, and the earlier it is released, the lower δ 34S values for the generated sulphide (H2S) or sulfur will be. However, for the anhydrite that participates in reactions, the higher the reaction degree, the more 32S is released, while the less 32S remains and the more δ 34S is increased. The testing results have proved the process of the dynamic fractionation of sulfur isotopes.
文摘It is concluded that there are three hydrocarbon generation and accumulation processes in northeastern Sichuan on the basis of the characteristics of solid bitumen, gas-light oils-heavy oils, homogenization temperature of fluid inclusions and diagenesis for beach- and reef-facies dolomite gas- bearing reservoirs in the Puguang Gas Field, northeastern Sichuan Basin, southern China. The first hydrocarbon generation and accumulation episode occurred in the Indosinian movement (late Middle Triassic). The sapropelic source rocks of the O3w (Upper Ordovician Wufeng Formation)-S1l (Lower Silurian Longmaxi Formation) were buried at depths of 2500 m to 3000 m with the paleogeothermal temperature ranging from 70℃ to 95℃, which yielded heavy oil with lower maturity. At the same time, intercrystalline pores, framework pores and corrosion caused by organic acid were formed within the organic reef facies of P2ch (Upper Permian Changxing Formation). And the first stage of hydrocarbon reservoir occurred, the level of surface porosity of residual solid bitumen {solid bitumen/ (solid bitumen + residual porosity)} was higher than 60%. The second episode occurred during the Middle Yanshanian movement (late Middle Jurassic). During that period, the mixed organic source rocks were deposited in an intra-platform sag during the Permian and sapropelic source rocks of O3w-S1l experienced a peak stage of crude oil or light oil and gas generation because they were buried at depths of 3500 m to 6800 m with paleogeothermal temperatures of 96-168℃. At that time, the level of surface porosity of residual solid bitumen of the T1f shoal facies reservoirs was between 25% and 35%, and the homogenization temperatures of the first and second stages of fluid inclusions varied from 100℃ to 150℃. The third episode occurred during the Late Yanshanian (Late Cretaceous) to the Himalayan movement. The hydrocarbon reservoirs formed during the T1f and P2ch had the deepest burial of 7700 m to 8700 m and paleogeotemperatures of 177℃ to 220℃. They could be cracked into dry gas (methane), and the same with the source rocks of the Permian and O3w-S1l because they all reached the pyrolysis stage under such conditions. Consequently, the present natural gas (methane) reservoirs were developed.
基金the Science&Technology Department of SINOPEC(No.P19012-2).
文摘Through comprehensively applying geological and geophysical data,as well as core and thin section observation,the characteristics of reservoirs and fractures in the second member of the Xujiahe Formation(hereinafter referred to as Xu2 Member)in the Yuanba area,northern Sichuan Basin,were studied.Combined with the analysis of the main controlling factors of production capacity,the types and characteristics of the sweet spots in the tight sandstone gas reservoir were determined.The evaluation standards and geological models of the sweet spots were established.The results are as follows:(1)There are bedding-parallel fracture-,fault-induced fracture-,and pore-dominated sweet spots in the tight sandstone gas reservoirs of the Xu2 Member.(2)The bedding parallel fracture-dominated sweet spots have developed in quartz sandstones with well-developed horizontal fractures and micro-fractures.They are characterized by high permeability and high gas output during production tests.This kind of sweet spots is thin and shows a limited distribution.Their logging responses show extremely low gamma-ray(GR)values and medium-high AC values.Moreover,the bedding parallel fracture-dominated sweet spots can be mapped using seismic methods.(3)The fault-induced fracture-dominated sweet spots have welldeveloped medium-and high-angle shear fractures.Their logging responses show an increase in peaks of AC values and total hydrocarbon content and a decrease in resistivity.Seismically,the areas with welldeveloped fault-induced fracture-dominated sweet spots can be effectively mapped using the properties such as seismic entropy and maximum likelihood.(4)The pore-dominated sweet spots are developed in medium-grained feldspathic litharenites with good reservoir properties.They are thick and widely distributed.(5)These three types of sweet spots are mainly determined by sedimentation,diagenesis,and tectonism.The bedding parallel fracture-dominated sweet spots are distributed in beachbar quartz sandstones on the top of the 1st sand layer group in the Xu2 Member,which develops in a shore-shallow lake environment.The fault-induced fracture-dominated sweet spots mainly occur near faults.They are increasingly developed in areas closer to faults.The pore-dominated sweet spots are primarily distributed in the 2nd and 3rd sand layer groups,which lie in the development areas of distributary channels near provenances at western Yuanba area.Based on the geological and seismic data,a comprehensive evaluation standard for these three types of sweet spots of the tight sandstone reservoirs in the Xu2 Member has been established,which,on the one hand,lays the foundation for the development and evaluation of the gas reservoir,and on the other hand,deepens the understanding of sweet spot in the tight sandstone gas reservoirs.