We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and th...We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.展开更多
目的 :检测胃癌和相应癌旁组织中 u PA和 u PAR m RNA表达水平 ,并探讨它们与胃癌的侵袭、转移之间的关系。方法 :运用 c DNA- m RNA Northern印迹杂交方法定性和定量地检测了 2 0例胃癌和相应癌旁组织中u PA和 u PAR m RNA的表达水平...目的 :检测胃癌和相应癌旁组织中 u PA和 u PAR m RNA表达水平 ,并探讨它们与胃癌的侵袭、转移之间的关系。方法 :运用 c DNA- m RNA Northern印迹杂交方法定性和定量地检测了 2 0例胃癌和相应癌旁组织中u PA和 u PAR m RNA的表达水平。结果 :在检测的 2 0例胃癌组织中分别有 13例 u PA和 15例 u PAR m RNA表达显著高于相应的癌旁组织 ( P<0 .0 1) ,其中 12例 u PA和 u PAR m RNA协同高于相应癌旁组织 ;11例伴有淋巴结转移的胃癌组织中 u PA和 u PAR m RNA表达水平显著高于 9例无淋巴结转移者。结论 :u PA、u PAR m RNA在胃癌组织中表达增强 ,并且与胃癌侵袭。展开更多
There are abundant Bajocian—Tithonian bivalves in the main ridge of the Tanggula Mountains of northern Qinghai—Xizang Plateau, China. After figuring the common and coeval species between Tanggula and other areas (Fi...There are abundant Bajocian—Tithonian bivalves in the main ridge of the Tanggula Mountains of northern Qinghai—Xizang Plateau, China. After figuring the common and coeval species between Tanggula and other areas (Fig. 1), and tracing the temporal and spacial historical distribution of the bivalves very capable of dispersion, some Jurassic bivalve biogeographic items, particularly the biogeographic relations, have been lit up. In the known 21 taxa of the Jurassic Pectinoida and Ostreoida from the main ridge of the Tanggula Mountains, there are 12 (57%) common and coeval species in northern Tethys, 13 (62%) common and coeval species in southern Tethys and 12 (57%) in Kachchh—southern Xizang area. It has demonstrated that there existed intermigration of bivalves between Tanggula and various parts of Tethys. Although there is no coeval species between Tanggula and western Australia, in these two areas there exist 6 (29%) close range common species of which 4 (19%) coevaity existed in western Australia and India Plate. Tanggula fauna is, therefore, still very close to that of western Australia. However, there are 15 (71%) common and 14 (67%) coevality species between the main ridge of the Tanggula Mountains and northwestern Europe, among the common species, 8 (38%) ones have lower limitation (first occurrence) in northwestern Europe but only 2 (10%) taxa are older in the main ridge of the Tanggula Mountains. It is very clear that pectinite and ostrea fauna of Tethys, particularly the main ridge of the Tanggula Mountains and Europe had very close relation and most Tanggula’s or northern Tethyan taxa migrated from northwestern Europe.展开更多
The Hoh Xil basin, with an area of 101000km\+2 and an average elevation of over 5000m, is a largest Tertiary sedimentary basin in the hinterland of the Tibetan plateau. It is situated in the western part of the Baya H...The Hoh Xil basin, with an area of 101000km\+2 and an average elevation of over 5000m, is a largest Tertiary sedimentary basin in the hinterland of the Tibetan plateau. It is situated in the western part of the Baya Har terrain (BT) and the northern part of the Qiangtang terrain (QT), and covers the Jinsha River Suture Zone (JRSZ), one of the five continental suture zones on the Tibetan plateau. Strong deformation and crustal shortening of about 40% at the Fenghuoshan area (Coward,et al.1990) or 42.8% at the Wudaoliang—Fenghuoshan area (Wang,et al.1999) happened at the northern Tibet before the Neogene. Therefore, sediments deposited the Hoh Xil basin may contain significant information of crustal shortening and early uplift of the Tibetan plateau. However, anterior researchers met a same painful problem to date the sedimentary sequences in the basin. By using a few fossils, they assessed doubt ages for main strata in the Hoh Xil basin, as the Paleogene / Eocene (Yi,et al.1990) or the Cretaceous (BGMRQ 1991; Zhang & Zheng 1994), since other datable materials like volcanic rocks are absent. Therefore, the precise stratigraphic dating becomes a precondition of more scientific research in the northern Tibet.展开更多
基金Supported by the Funds for Creative Research Groups of China (No. 40721004)the National Natural Science Foundation of China (Nos. 40776012, 40976056)the Special Funds of the State Key Laboratory of Estuarine and Coastal Research (No. 2008KYYW03)
文摘We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.
文摘目的 :检测胃癌和相应癌旁组织中 u PA和 u PAR m RNA表达水平 ,并探讨它们与胃癌的侵袭、转移之间的关系。方法 :运用 c DNA- m RNA Northern印迹杂交方法定性和定量地检测了 2 0例胃癌和相应癌旁组织中u PA和 u PAR m RNA的表达水平。结果 :在检测的 2 0例胃癌组织中分别有 13例 u PA和 15例 u PAR m RNA表达显著高于相应的癌旁组织 ( P<0 .0 1) ,其中 12例 u PA和 u PAR m RNA协同高于相应癌旁组织 ;11例伴有淋巴结转移的胃癌组织中 u PA和 u PAR m RNA表达水平显著高于 9例无淋巴结转移者。结论 :u PA、u PAR m RNA在胃癌组织中表达增强 ,并且与胃癌侵袭。
文摘There are abundant Bajocian—Tithonian bivalves in the main ridge of the Tanggula Mountains of northern Qinghai—Xizang Plateau, China. After figuring the common and coeval species between Tanggula and other areas (Fig. 1), and tracing the temporal and spacial historical distribution of the bivalves very capable of dispersion, some Jurassic bivalve biogeographic items, particularly the biogeographic relations, have been lit up. In the known 21 taxa of the Jurassic Pectinoida and Ostreoida from the main ridge of the Tanggula Mountains, there are 12 (57%) common and coeval species in northern Tethys, 13 (62%) common and coeval species in southern Tethys and 12 (57%) in Kachchh—southern Xizang area. It has demonstrated that there existed intermigration of bivalves between Tanggula and various parts of Tethys. Although there is no coeval species between Tanggula and western Australia, in these two areas there exist 6 (29%) close range common species of which 4 (19%) coevaity existed in western Australia and India Plate. Tanggula fauna is, therefore, still very close to that of western Australia. However, there are 15 (71%) common and 14 (67%) coevality species between the main ridge of the Tanggula Mountains and northwestern Europe, among the common species, 8 (38%) ones have lower limitation (first occurrence) in northwestern Europe but only 2 (10%) taxa are older in the main ridge of the Tanggula Mountains. It is very clear that pectinite and ostrea fauna of Tethys, particularly the main ridge of the Tanggula Mountains and Europe had very close relation and most Tanggula’s or northern Tethyan taxa migrated from northwestern Europe.
文摘The Hoh Xil basin, with an area of 101000km\+2 and an average elevation of over 5000m, is a largest Tertiary sedimentary basin in the hinterland of the Tibetan plateau. It is situated in the western part of the Baya Har terrain (BT) and the northern part of the Qiangtang terrain (QT), and covers the Jinsha River Suture Zone (JRSZ), one of the five continental suture zones on the Tibetan plateau. Strong deformation and crustal shortening of about 40% at the Fenghuoshan area (Coward,et al.1990) or 42.8% at the Wudaoliang—Fenghuoshan area (Wang,et al.1999) happened at the northern Tibet before the Neogene. Therefore, sediments deposited the Hoh Xil basin may contain significant information of crustal shortening and early uplift of the Tibetan plateau. However, anterior researchers met a same painful problem to date the sedimentary sequences in the basin. By using a few fossils, they assessed doubt ages for main strata in the Hoh Xil basin, as the Paleogene / Eocene (Yi,et al.1990) or the Cretaceous (BGMRQ 1991; Zhang & Zheng 1994), since other datable materials like volcanic rocks are absent. Therefore, the precise stratigraphic dating becomes a precondition of more scientific research in the northern Tibet.