Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the ...Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.展开更多
便携式医疗设备的发展离不开安全高效的电池。精准预测锂电池的荷电状态(state of charge,SOC)可以极大提高电池的可靠性,这对便携式医疗设备来说具有重要意义。针对BP神经网络算法对初始权值和阈值依赖程度高,容易陷入局部最小值等问题...便携式医疗设备的发展离不开安全高效的电池。精准预测锂电池的荷电状态(state of charge,SOC)可以极大提高电池的可靠性,这对便携式医疗设备来说具有重要意义。针对BP神经网络算法对初始权值和阈值依赖程度高,容易陷入局部最小值等问题,该文采用北方苍鹰算法来优化BP神经网络,并测试了医疗设备在不同的环境温度(4、24、43℃)条件下,18650型锂电池的数据。实验结果表明,北方苍鹰算法能够在不同的温度环境下显著提高BP神经网络的预测精度,实现对电池荷电状态的精准有效预测。展开更多
由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short T...由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short Term Memory,FE-NGO-LSTM)混合模型。首先对水质数据集进行缺失值补齐、特征筛选与特征多项式构造,然后基于NGO-LSTM模型优化模型参数,提升预测性能;对不同多项式阶数下的特征预测效果进行分析之后,将该模型与基于灰狼优化算法、鲸鱼优化算法及粒子群优化算法的LSTM模型进行对比;最后,在太湖流域东苕溪城南监测断面对该模型进行了验证,计算FE-NGO-LSTM模型预见期为4,8,12,16,20,24 h的预测结果。试验结果显示:当多项式阶数为2阶时,模型预测效果最好,FE-NGO-LSTM模型相比基于其他优化算法的LSTM模型,平均绝对误差、均方误差、均方根误差分别至少降低9.0%,12.9%及6.3%,且随着预见期的增加,预测误差仍在可接受范围内,说明FE-NGO-LSTM模型在预测溶解氧浓度时具有一定优势与泛化性。展开更多
Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address...Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address the FS problem.The NGO is an efficient swarm-based algorithm that takes its inspiration from the predatory actions of the northern goshawk.In order to overcome the disadvantages that NGO is prone to local optimum trap,slow convergence speed and low convergence accuracy,two strategies are introduced in the original NGO to boost the effectiveness of NGO.Firstly,a learning strategy is proposed where search members learn by learning from the information gaps of other members of the population to enhance the algorithm's global search ability while improving the population diversity.Secondly,a hybrid differential strategy is proposed to improve the capability of the algorithm to escape from the trap of the local optimum by perturbing the individuals to improve convergence accuracy and speed.To prove the effectiveness of the suggested DENGO,it is measured against eleven advanced algorithms on the CEC2015 and CEC2017 benchmark functions,and the obtained results demonstrate that the DENGO has a stronger global exploration capability with higher convergence performance and stability.Subsequently,the proposed DENGO is used for FS,and the 29 benchmark datasets from the UCL database prove that the DENGO-based FS method equipped with higher classification accuracy and stability compared with eight other popular FS methods,and therefore,DENGO is considered to be one of the most prospective FS techniques.DENGO's code can be obtained at https://www.mathworks.com/matlabcentral/fileexchange/158811-project1.展开更多
基金supported by theKey Research and Development Project of Hubei Province(No.2023BAB094)the Key Project of Science and Technology Research Program of Hubei Educational Committee(No.D20211402)the Open Foundation of HubeiKey Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System(No.HBSEES202309).
文摘Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.
文摘为解决风电场并网时的功率波动影响电网稳定性的问题,提出一种基于北方苍鹰(northern goshawk optimization,NGO)算法优化变分模态分解(variational mode decomposition,VMD)参数的混合储能功率分配策略。首先,按照风电场并网技术规范,采用自适应平均滤波法对风力发电功率进行滤波,并由滤波后的并网功率计算出波动功率。然后,采用NGO优化VMD算法中分解模态数K值和二次惩罚因子α值的最优值组合,将波动功率信号经VMD分解后实现在锂电池和超级电容器的功率分配,最后,采用双重模糊控制对混合储能系统(hybrid energy storage system,HESS)的荷电状态(state of charge,SOC)进行优化,完成HESS功率的二次分配。仿真结果表明,该控制策略不仅能够满足风电并网最大功率波动要求,还可以保持SOC维持在合理范围,实现HESS长期安全运行。
文摘便携式医疗设备的发展离不开安全高效的电池。精准预测锂电池的荷电状态(state of charge,SOC)可以极大提高电池的可靠性,这对便携式医疗设备来说具有重要意义。针对BP神经网络算法对初始权值和阈值依赖程度高,容易陷入局部最小值等问题,该文采用北方苍鹰算法来优化BP神经网络,并测试了医疗设备在不同的环境温度(4、24、43℃)条件下,18650型锂电池的数据。实验结果表明,北方苍鹰算法能够在不同的温度环境下显著提高BP神经网络的预测精度,实现对电池荷电状态的精准有效预测。
文摘由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short Term Memory,FE-NGO-LSTM)混合模型。首先对水质数据集进行缺失值补齐、特征筛选与特征多项式构造,然后基于NGO-LSTM模型优化模型参数,提升预测性能;对不同多项式阶数下的特征预测效果进行分析之后,将该模型与基于灰狼优化算法、鲸鱼优化算法及粒子群优化算法的LSTM模型进行对比;最后,在太湖流域东苕溪城南监测断面对该模型进行了验证,计算FE-NGO-LSTM模型预见期为4,8,12,16,20,24 h的预测结果。试验结果显示:当多项式阶数为2阶时,模型预测效果最好,FE-NGO-LSTM模型相比基于其他优化算法的LSTM模型,平均绝对误差、均方误差、均方根误差分别至少降低9.0%,12.9%及6.3%,且随着预见期的增加,预测误差仍在可接受范围内,说明FE-NGO-LSTM模型在预测溶解氧浓度时具有一定优势与泛化性。
基金supported in part by the National Natural Science Foundation of China's top-level program under grant No.52275480in part by Reserve projects for centralized guidance of local science and technology development funds under grant No.QKHZYD[2023]002.
文摘Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address the FS problem.The NGO is an efficient swarm-based algorithm that takes its inspiration from the predatory actions of the northern goshawk.In order to overcome the disadvantages that NGO is prone to local optimum trap,slow convergence speed and low convergence accuracy,two strategies are introduced in the original NGO to boost the effectiveness of NGO.Firstly,a learning strategy is proposed where search members learn by learning from the information gaps of other members of the population to enhance the algorithm's global search ability while improving the population diversity.Secondly,a hybrid differential strategy is proposed to improve the capability of the algorithm to escape from the trap of the local optimum by perturbing the individuals to improve convergence accuracy and speed.To prove the effectiveness of the suggested DENGO,it is measured against eleven advanced algorithms on the CEC2015 and CEC2017 benchmark functions,and the obtained results demonstrate that the DENGO has a stronger global exploration capability with higher convergence performance and stability.Subsequently,the proposed DENGO is used for FS,and the 29 benchmark datasets from the UCL database prove that the DENGO-based FS method equipped with higher classification accuracy and stability compared with eight other popular FS methods,and therefore,DENGO is considered to be one of the most prospective FS techniques.DENGO's code can be obtained at https://www.mathworks.com/matlabcentral/fileexchange/158811-project1.