期刊文献+
共找到49篇文章
< 1 2 3 >
每页显示 20 50 100
A Multi-Strategy-Improved Northern Goshawk Optimization Algorithm for Global Optimization and Engineering Design
1
作者 Liang Zeng Mai Hu +2 位作者 Chenning Zhang Quan Yuan Shanshan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1677-1709,共33页
Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the ... Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges. 展开更多
关键词 northern goshawk optimization tent chaotic map T-distribution disturbance state transition algorithm UAV path planning
下载PDF
基于NGO-VMD和改进GoogLeNet的齿轮箱故障诊断方法
2
作者 李俊卿 刘若尧 何玉灵 《机床与液压》 北大核心 2024年第12期193-201,共9页
目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VM... 目前的齿轮箱故障诊断方法,在多转速工况及噪声干扰下,存在过拟合及诊断效果不佳的问题。针对此问题,提出一种北方苍鹰(NGO)算法优化变分模态分解(VMD)结合改进GoogLeNet的齿轮箱故障诊断方法。使用NGO对VMD进行参数寻优,利用优化后的VMD去除故障信号中的噪声;对原始GoogLeNet的结构进行合理删减,并利用延迟丢弃法、可训练的ReLU函数(TReLU)对其改进;最后,将去噪后的故障信号转换为二维图作为改进GoogLeNet的输入数据进行网络的训练及分类,得到故障诊断结果。实验结果表明:与其他降噪方法相比,NGO-VMD方法的降噪效果明显,能显著提高故障诊断的准确率;与常见的卷积神经网络相比,提出的改进GoogLeNet能进一步提高故障诊断的准确率,达到了97.2%。 展开更多
关键词 变分模态分解(VMD) 北方苍鹰优化(ngo)算法 改进GoogLeNet 齿轮箱故障诊断
下载PDF
基于TF-NGO算法的CFB锅炉床温系统建模研究
3
作者 印江 霍泽良 杜志龙 《自动化仪表》 CAS 2024年第6期22-27,32,共7页
床温是循环流化床(CFB)锅炉重要的运行参数之一。针对床温耦合性强、干扰因素多、控制复杂的问题,亟需建立床温的数学模型,以实现床温控制,从而保证CFB锅炉安全、平稳地运行。为此,首先引入了混沌映射、切线飞行(TF)和柯西变异策略改进... 床温是循环流化床(CFB)锅炉重要的运行参数之一。针对床温耦合性强、干扰因素多、控制复杂的问题,亟需建立床温的数学模型,以实现床温控制,从而保证CFB锅炉安全、平稳地运行。为此,首先引入了混沌映射、切线飞行(TF)和柯西变异策略改进北方苍鹰优化(NGO)算法,并用实际工况的系统模型测试TF-NGO算法。测试结果表明,TF-NGO算法拥有更快的收敛速度和更高的寻优精度。其次,采集并预处理山西某电厂350 MW超临界CFB锅炉的现场运行数据。最后,采用TF-NGO算法对所建模型的参数进行辨识,并用实际工况数据进行模型验证。辨识和验证结果表明,由TF-NGO算法辨识的床温模型与实际输出拟合度高,能有效反映床温的动态特性,证明所建模型的有效性。该研究为后续对350 MW超临界CFB锅炉床温的优化控制研究奠定了基础。 展开更多
关键词 循环流化床 锅炉 床温 系统辨识 切线飞行 北方苍鹰优化算法
下载PDF
基于改进NGO算法优化SVM的变压器故障诊断研究
4
作者 陈忠华 王森 《控制工程》 CSCD 北大核心 2024年第11期2010-2018,共9页
为解决通过油中溶解气体诊断变压器故障精确度不高的问题,提出了一种改进北方苍鹰优化(INGO)算法优化支持向量机(SVM)的故障分类模型。首先,采用主成分分析(PCA)法对油中溶解气体体积数据降维,去除冗余信息;然后,通过引入Singer混沌映... 为解决通过油中溶解气体诊断变压器故障精确度不高的问题,提出了一种改进北方苍鹰优化(INGO)算法优化支持向量机(SVM)的故障分类模型。首先,采用主成分分析(PCA)法对油中溶解气体体积数据降维,去除冗余信息;然后,通过引入Singer混沌映射、改进的野马算法搜索机制、Lévy飞行策略多种方法改进北方苍鹰优化算法,再利用INGO算法对SVM核心参数进行优化;最后,将处理后的数据输入到INGO-SVM故障诊断模型中。结果表明,其诊断平均准确率为93.5%,与NGO、GWO、AO优化SVM相比,诊断平均准确率分别提升了3.34%、7.04%、10.12%。同时,该模型也优于极限学习机(ELM)、概率神经网络(PNN)、随机森林(RF)典型分类模型,验证了所建立的变压器故障诊断模型具有更高的精度和泛化能力。 展开更多
关键词 变压器 故障诊断 数据处理 北方苍鹰优化算法 支持向量机
下载PDF
基于NGO-CNN-SVM的高标准农田灌溉工程施工成本预测
5
作者 韩坤 王惟璐 +3 位作者 黄雪峰 李鹏海 李春生 郑俊林 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期62-72,共11页
为提高高标准农田项目施工成本的预测精度,控制施工成本在合理范围,减少投资风险,该研究从单体灌溉工程施工成本预测角度出发,通过随机森林(random forest,RF)筛选出高标准农田灌溉工程施工成本的关键影响因素,结合卷积神经网络(convolu... 为提高高标准农田项目施工成本的预测精度,控制施工成本在合理范围,减少投资风险,该研究从单体灌溉工程施工成本预测角度出发,通过随机森林(random forest,RF)筛选出高标准农田灌溉工程施工成本的关键影响因素,结合卷积神经网络(convolutional neural networks,CNN)和支持向量机(support vector machine,SVM)两种模型的优点,通过北方苍鹰优化算法(northern goshawk optimization,NGO)对模型里的惩罚因子和核参数进行寻优,构建基于NGO-CNN-SVM的施工成本预测模型。通过辽宁省2018—2023年高标准农田工程中灌溉工程的施工成本数据,选取样本决定系数R^(2)、平均绝对误差MAE、平均绝对百分比误差MAPE和均方根误差RMSE作为精度指标进行分析,结果表明:基于NGO-CNN-SVM的施工成本预测模型在渠道工程中MAE低于0.615万元,RMSE低于0.512万元,R^(2)达到0.968以上,相对误差小于4.210%;在进水闸工程中MAE低于0.610万元,RMSE低于0.536万元,R^(2)达到0.966以上,相对误差小于4.410%;在桥涵工程中MAE低于0.494万元,RMSE低于0.477万元,R^(2)达到0.970以上,相对误差小于3.548%,并相比较于反向传播神经网络,CNN和CNN-SVM模型,NGO-CNN-SVM模型的预测结果均最优。通过特征选择、模型融合、算法优化以及不同模型对比表明NGO-CNN-SVM模型具有更高的预测准确率和泛化性,可为高标准农田灌溉工程施工成本预测提供理论依据。 展开更多
关键词 高标准农田 灌溉 随机森林 北方苍鹰优化算法 卷积神经网络 支持向量机 施工成本
下载PDF
基于改进NGO算法的煤体应力反演
6
作者 胡坤 王阳 +1 位作者 刘心强 李彦忠 《科学技术与工程》 北大核心 2024年第4期1440-1447,共8页
大直径钻孔卸压是防治煤矿冲击地压的有效手段之一,研究钻进过程煤体应力的变化情况对防止冲击地压有重要意义。目前关于钻进参数与煤体应力的关系模型研究较少且精度有限,对此提出一种基于北方苍鹰优化算法(northern goshawk optimizat... 大直径钻孔卸压是防治煤矿冲击地压的有效手段之一,研究钻进过程煤体应力的变化情况对防止冲击地压有重要意义。目前关于钻进参数与煤体应力的关系模型研究较少且精度有限,对此提出一种基于北方苍鹰优化算法(northern goshawk optimization,NGO)与支持向量回归(support vector regression,SVR)的PSO-NGO-SVR煤体应力反演模型。首先,该模型在NGO种群初始化阶段引入Tent混沌映射,并将粒子群算法(particle swarm optimization,PSO)的优势融入到北方苍鹰算法中,使改进后的北方苍鹰算法拥有更好的性能;接着,使用改进后的北方苍鹰算法对支持向量回归中的超参数迭代寻优;最后,以迭代后的最优超参数建立模型。结果表明:改进后北方苍鹰算法的敛速度和收敛精度有较大提升,PSO-NGO-SVR煤体应力反演模型拥有较高精度。 展开更多
关键词 北方苍鹰算法 支持向量回归(SVR) 粒子群优化(PSO) 应力反演
下载PDF
基于INGO-SWGMN混合模型的超短期风速预测研究
7
作者 付文龙 章轩瑞 +2 位作者 张海荣 傅雨晨 刘兴韬 《太阳能学报》 EI CAS CSCD 北大核心 2024年第5期133-143,共11页
为提高超短期风速预测的精度,提出一种融合变分模态分解(VMD)、相空间重构、改进的北方苍鹰优化算法(INGO)和共享权重门控记忆网络(SWGMN)的超短期风速混合预测模型。首先,考虑到风速的强波动性会对预测带来不利影响,采用VMD对风速时间... 为提高超短期风速预测的精度,提出一种融合变分模态分解(VMD)、相空间重构、改进的北方苍鹰优化算法(INGO)和共享权重门控记忆网络(SWGMN)的超短期风速混合预测模型。首先,考虑到风速的强波动性会对预测带来不利影响,采用VMD对风速时间序列进行分解,得到一系列相对平稳的子序列。然后对各子序列分量进行相空间重构,得到相应的相空间矩阵。接着针对长短期记忆网络(LSTM)训练时间较长和权重参数较多的问题,提出一种SWGMN对各子序列分量建立预测模型。同时,为提高模型预测性能,提出一种INGO对SWGMN模型的两个超参数进行寻优,得到最优参数组合。最后累加各子序列预测值,得到最终风速预测结果。实验结果表明,在单步预测和多步预测中,所提方法的平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)、决定系数R2分别为0.1828 m/s、0.2263 m/s、4.5481%、0.987和0.2429 m/s、0.3107 m/s、6.1113%、0.976,相较于传统方法具有更高的预测精度和预测效率。 展开更多
关键词 风速 预测 深度学习 变分模态分解 共享权重门控记忆网络 改进的北方苍鹰优化算法
下载PDF
基于EEMD-NGO-LSTM神经网络耦合的月径流预测模型及应用 被引量:1
8
作者 张冲 王千凤 +2 位作者 齐新虎 王思宇 陈末 《水力发电》 CAS 2024年第1期1-7,共7页
为了提高径流序列的稳定度和精度,减小参数优化不当导致的非线性误差,研究将长短期记忆神经网络(LSTM)、集成经验模态分解(EEMD)和北方苍鹰优化算法(NGO)相结合,构建了EEMD-NGO-LSTM耦合预测模型。将此预测模型应用于模拟东辽河中下游... 为了提高径流序列的稳定度和精度,减小参数优化不当导致的非线性误差,研究将长短期记忆神经网络(LSTM)、集成经验模态分解(EEMD)和北方苍鹰优化算法(NGO)相结合,构建了EEMD-NGO-LSTM耦合预测模型。将此预测模型应用于模拟东辽河中下游的控制总站——王奔水文站2012年~2021年逐月径流过程,并与鲸鱼算法(WOA)以及灰狼算法(GWO)优化的长短期记忆神经网络进行模型比较。结果表明,EEMD-NGO-LSTM耦合预测模型的超参数迭代速度最快,精度最高,预测结果最接近实测值,其决定系数R^(2)为0.8643。而后采用CMIP6气候模式(SSP126情景)下的2030年的降水、气温数据输入模型进行预测,在气温上升1℃,降水不变的情景下,年径流量将增加6.61%;在降水升高5%,气温不变的情景下,年径流量将增加6.95%;在气温上升1℃、降水升高5%的情境下,年径流量将增加22.16%。 展开更多
关键词 月径流预测 集成经验模态分解 北方苍鹰优化算法 长短期记忆神经网络 耦合模型 预测精度
下载PDF
基于KPCA-NGO-LSSVM的混凝土坝变形预测模型
9
作者 詹明强 陈波 袁志颖 《水电能源科学》 北大核心 2024年第8期127-131,共5页
变形作为最直观的监测指标,常用来反映大坝的服役性态变化。为建立更加符合混凝土坝变形的预测模型,实现更高精度的混凝土坝变形预测,针对混凝土坝变形序列呈现不确定性和非线性的特征,将核主成分分析(KPCA)引入最小二乘支持向量机(LSS... 变形作为最直观的监测指标,常用来反映大坝的服役性态变化。为建立更加符合混凝土坝变形的预测模型,实现更高精度的混凝土坝变形预测,针对混凝土坝变形序列呈现不确定性和非线性的特征,将核主成分分析(KPCA)引入最小二乘支持向量机(LSSVM)来约简因子关系,降低预测模型的输入维数和复杂度,同时使用北方苍鹰优化算法(NGO)对最小二乘支持向量机进行参数寻优,构建了基于KPCA-NGO-LSSVM的混凝土坝变形预测模型。工程实例表明,KPCA-NGO-LSSVM模型相比传统多元线性回归(MLR)、LSSVM、KPCA-LSSVM的预测值与实际值的拟合效果更好,预测精度更高,能更有效地预测混凝土坝变形。 展开更多
关键词 混凝土坝 核主成分分析 北方苍鹰算法 最小二乘支持向量机 变形预测
下载PDF
多策略改进的NGO算法在大坝参数反演中的应用
10
作者 曹文翰 马琳 郝小鸟 《水力发电》 CAS 2024年第5期101-109,共9页
为解决混凝土坝参数优化反演存在的问题,包括寻优性能不佳、精度不足和效率低下等,提出了一种基于多策略改进北方苍鹰算法(MSNGO)的混凝土坝参数优化反演策略。首先,采取多个策略改进北方苍鹰算法,以提高原始算法的寻优能力。接着,结合... 为解决混凝土坝参数优化反演存在的问题,包括寻优性能不佳、精度不足和效率低下等,提出了一种基于多策略改进北方苍鹰算法(MSNGO)的混凝土坝参数优化反演策略。首先,采取多个策略改进北方苍鹰算法,以提高原始算法的寻优能力。接着,结合有限元正分析,构建计算与实测值之间合适的目标函数,利用MSNGO构建智能优化反演模型,并通过并行策略提高反演效率,搜索得到参数反演最优值。通过两个算例对该方法进行验证,并与基准优化算法比较计算结果。结果表明,MSNGO反演策略比其他优化算法收敛速度快、且能跳出局部极值使反演参数结果更为准确,测点计算值与实测值有良好的吻合度,表明该智能优化方法可在混凝土坝参数反演的实际问题中进行应用。 展开更多
关键词 多策略改进 北方苍鹰优化算法 位移统计模型 参数反演 弹性模量 混凝土坝
下载PDF
NGO在光储微网系统功率分配中的应用
11
作者 马丙泰 徐庆锋 +3 位作者 彭逸 王江伟 张宝芳 郭华杰 《广西电力》 2024年第2期67-73,86,共8页
光伏发电混合储能系统中,为降低常见智能算法参数优化VMD中分解模态数(K)、二次惩罚因子(α)取值不合理对系统重构功率准确性的影响。提出采用一种新的智能算法即北方苍鹰(NGO)算法进行优化分析;利用NGO参数优化VMD以更加稳定的获得[K,a... 光伏发电混合储能系统中,为降低常见智能算法参数优化VMD中分解模态数(K)、二次惩罚因子(α)取值不合理对系统重构功率准确性的影响。提出采用一种新的智能算法即北方苍鹰(NGO)算法进行优化分析;利用NGO参数优化VMD以更加稳定的获得[K,a]最优组合,并将寻优结果应用于微网系统剩余功率分解中,从而提升重构功率与原始剩余功率信号重合程度,将剩余功率合理的分配给混合储能系统,优化储能系统初次功率分配及容量配置等问题。算例分析中,通过与粒子群及乌燕鸥算法参数优化VMD结果进行对比,并结合对称平均绝对百分误差(SMAPE)分析功率重构误差,验证了所述方法的有效性与优越性。 展开更多
关键词 剩余功率 参数优化 重构功率 北方苍鹰算法 对称平均绝对百分误差
下载PDF
基于INGO算法的移动机器人自主避障方法
12
作者 杨红森 周文涛 《传感器与微系统》 CSCD 北大核心 2024年第11期139-142,共4页
针对移动机器人在避障过程中存在的避障效率差、寻优速度慢、易陷入局部极值等问题,提出一种基于改进北方苍鹰优化(INGO)算法的避障方法。首先,采用Tent混沌映射策略生成初始种群,从而提高初始解集的质量;其次,引入一种基于Levy飞行的... 针对移动机器人在避障过程中存在的避障效率差、寻优速度慢、易陷入局部极值等问题,提出一种基于改进北方苍鹰优化(INGO)算法的避障方法。首先,采用Tent混沌映射策略生成初始种群,从而提高初始解集的质量;其次,引入一种基于Levy飞行的搜索策略,以提升搜索效率;同时,为了平衡勘探和开发过程,设计了非线性收敛因子和心形搜索策略,从而降低算法陷入局部极值的概率,提高算法的寻优速度。通过仿真实例,验证算法性能。结果表明:相较对比算法,INGO算法在简单任务场景下路径长度减少3.19%~3.80%、运行时间缩短5.59%~17.68%;在复杂任务场景下,路径长度减少3.91%~4.84%、运行时间缩短14.71%~17.88%。实验验证了INGO算法的可行性,能够有效提升移动机器人的避障能力。 展开更多
关键词 北方苍鹰算法 移动机器人 避障 启发式算法
下载PDF
基于NGO-VMD的混合储能功率分配策略
13
作者 王海燕 钱林宇 《中国电力》 CSCD 北大核心 2024年第11期119-128,共10页
为解决风电场并网时的功率波动影响电网稳定性的问题,提出一种基于北方苍鹰(northern goshawk optimization,NGO)算法优化变分模态分解(variational mode decomposition,VMD)参数的混合储能功率分配策略。首先,按照风电场并网技术规范,... 为解决风电场并网时的功率波动影响电网稳定性的问题,提出一种基于北方苍鹰(northern goshawk optimization,NGO)算法优化变分模态分解(variational mode decomposition,VMD)参数的混合储能功率分配策略。首先,按照风电场并网技术规范,采用自适应平均滤波法对风力发电功率进行滤波,并由滤波后的并网功率计算出波动功率。然后,采用NGO优化VMD算法中分解模态数K值和二次惩罚因子α值的最优值组合,将波动功率信号经VMD分解后实现在锂电池和超级电容器的功率分配,最后,采用双重模糊控制对混合储能系统(hybrid energy storage system,HESS)的荷电状态(state of charge,SOC)进行优化,完成HESS功率的二次分配。仿真结果表明,该控制策略不仅能够满足风电并网最大功率波动要求,还可以保持SOC维持在合理范围,实现HESS长期安全运行。 展开更多
关键词 风电并网 北方苍鹰算法 变分模态分解 混合储能 模糊控制
下载PDF
基于VMD-NGO-LSTM的融雪洪水汛期非平稳性极值径流预测模型及应用
14
作者 周霞 周峰 《人民珠江》 2024年第6期127-137,共11页
金沟河属于典型的融雪补给流域,受自然环境、气候变化和人类活动等因素的影响,汛期极值径流序列表现出非平稳性及复杂性特征,给流域内汛期极值径流精准预测带来新的挑战。为解决该地区汛期极值径流的非平稳性对于预测结果的影响,引入变... 金沟河属于典型的融雪补给流域,受自然环境、气候变化和人类活动等因素的影响,汛期极值径流序列表现出非平稳性及复杂性特征,给流域内汛期极值径流精准预测带来新的挑战。为解决该地区汛期极值径流的非平稳性对于预测结果的影响,引入变分模态分解算法(Variational Mode Decomposition,VMD),提出一种基于北方苍鹰优化算法(Northern Goshawk Optimization,NGO)与长短期记忆神经网络(Long Short-Term Memory,LSTM)的组合预测模型(VMD-NGO-LSTM),应用于金沟河流域八家户水文站1964—2016年的汛期极值径流预测,采用均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、Nash系数(NSE)评价模型的预测能力。结果表明:(1)根据金沟河流域融雪洪水汛期径流极值序列的周期变化和趋势变化的水文特性变化结果表明径流极大值序列和径流极小值序列均具有非平稳性;(2)VMD-NGO-LSTM预测模型的NSE均大于0.97,且RMSE、MAPE、MAE值均处于偏小状态,与VMD-LSTM模型和VMD-NGO-BP模型相比,VMD-NGO-LSTM模型能够很好地预测八家户汛期极值径流的变化过程。该研究为汛期极值径流预测工作提供了新的思路,对新疆地区防洪减灾具有一定参考价值。 展开更多
关键词 融雪洪水 极值径流预测 变分模态分解 北方苍鹰优化算法 长短期记忆神经网络 非平稳性
下载PDF
基于混合特征选择和INGO-DHKELM的变压器故障诊断方法
15
作者 李多 张莲 +3 位作者 赵娜 谢文龙 黄伟 季鸿宇 《南方电网技术》 CSCD 北大核心 2024年第8期19-28,共10页
针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit le... 针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit learning machine,DHKELM)实现变压器故障诊断。首先,基于相关比值法构建24维变压器故障特征集,从线性相关和非线性相关的角度出发,采用Pearson相关系数和互信息法,筛除相关性较低的特征。其次,引入Logistic混沌映射、随机反向学习和自适应t分布变异改进NGO算法,提升其寻优性能。然后,利用INGO算法对保留特征进行二次筛选,获得最优输入特征。最后,将极限学习机自动编码器引入混合核极限学习机中,建立DHKELM诊断模型,利用INGO对DHKELM模型初始参数进行优化,完成INGO-DHKELM变压器故障诊断模型的构建。实验表明,与常规特征选择方法相比,利用混合式故障特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率;相较于其他优化型诊断模型,INGO-DHKELM具有更高的准确率和更好的稳定性。 展开更多
关键词 变压器 故障诊断 特征选择 北方苍鹰优化算法 深度混合核极限学习机
下载PDF
基于INGO-VMD-改进小波阈值算法的TDLAS二次谐波信号去噪研究
16
作者 曾维银 刘星宇 +2 位作者 缪雨曦 曾庆华 杨春 《激光杂志》 CAS 北大核心 2024年第9期53-61,共9页
针对可调谐半导体激光吸收光谱(TDLAS)技术中气体浓度检测信号———二次谐波信号夹杂噪声导致反演精度下降的问题,提出基于改进的北苍鹰优化算法(INGO)、变分模态分解(VMD)和改进小波阈值法联合的去噪算法,利用包络熵值最小为目标函数... 针对可调谐半导体激光吸收光谱(TDLAS)技术中气体浓度检测信号———二次谐波信号夹杂噪声导致反演精度下降的问题,提出基于改进的北苍鹰优化算法(INGO)、变分模态分解(VMD)和改进小波阈值法联合的去噪算法,利用包络熵值最小为目标函数的INGO算法寻找VMD中重要参数———模态个数k和惩罚因子α,以分解后的各固有模态分量(IMF)能量密度与平均周期乘积为一常量的特点筛选出有效信号IMF分量,联合小波改进阈值法对有效信号进行降噪并组合得到去噪后信号。仿真实验对比分析表明INGO-VMD-改进小波阈值法能有效滤除噪声信号,降低幅值误差,提高反演精度,降噪效果较优,降噪后波形相似系数为99.86%,信噪比达到25.2305 dB,均方根误差达到0.01523%,较含噪信号,峰值误差下降0.157。 展开更多
关键词 二次谐波 改进小波阈值 北苍鹰优化 变分模态分解
下载PDF
NGO-BP神经网络在便携式医疗设备电池寿命预测中的应用
17
作者 安玳宁 石磊 徐岩 《中国医疗器械杂志》 2024年第3期293-297,共5页
便携式医疗设备的发展离不开安全高效的电池。精准预测锂电池的荷电状态(state of charge,SOC)可以极大提高电池的可靠性,这对便携式医疗设备来说具有重要意义。针对BP神经网络算法对初始权值和阈值依赖程度高,容易陷入局部最小值等问题... 便携式医疗设备的发展离不开安全高效的电池。精准预测锂电池的荷电状态(state of charge,SOC)可以极大提高电池的可靠性,这对便携式医疗设备来说具有重要意义。针对BP神经网络算法对初始权值和阈值依赖程度高,容易陷入局部最小值等问题,该文采用北方苍鹰算法来优化BP神经网络,并测试了医疗设备在不同的环境温度(4、24、43℃)条件下,18650型锂电池的数据。实验结果表明,北方苍鹰算法能够在不同的温度环境下显著提高BP神经网络的预测精度,实现对电池荷电状态的精准有效预测。 展开更多
关键词 便携式医疗设备 荷电状态 BP神经网络 北方苍鹰算法 环境温度
下载PDF
基于特征工程和NGO-LSTM的水质预测模型研究
18
作者 虞佳颖 肖姚 《人民长江》 北大核心 2024年第10期86-93,共8页
由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short T... 由于水质数据特征复杂、关联度参差不齐而导致溶解氧浓度预测难度较大,为提高水质溶解氧浓度预测的准确性,提出了一种基于特征工程和北方苍鹰优化算法的长短期记忆网络(Feature Engineering-Northern Goshawk Optimization-Long Short Term Memory,FE-NGO-LSTM)混合模型。首先对水质数据集进行缺失值补齐、特征筛选与特征多项式构造,然后基于NGO-LSTM模型优化模型参数,提升预测性能;对不同多项式阶数下的特征预测效果进行分析之后,将该模型与基于灰狼优化算法、鲸鱼优化算法及粒子群优化算法的LSTM模型进行对比;最后,在太湖流域东苕溪城南监测断面对该模型进行了验证,计算FE-NGO-LSTM模型预见期为4,8,12,16,20,24 h的预测结果。试验结果显示:当多项式阶数为2阶时,模型预测效果最好,FE-NGO-LSTM模型相比基于其他优化算法的LSTM模型,平均绝对误差、均方误差、均方根误差分别至少降低9.0%,12.9%及6.3%,且随着预见期的增加,预测误差仍在可接受范围内,说明FE-NGO-LSTM模型在预测溶解氧浓度时具有一定优势与泛化性。 展开更多
关键词 水质预测 溶解氧 特征工程 深度学习 北方苍鹰优化算法 耦合模型 苕溪流域 太湖流域
下载PDF
基于NGO-DBSCAN的岩体结构面智能识别
19
作者 王金松 《价值工程》 2024年第18期98-101,共4页
结构面的准确识别与提取,对于岩体工程稳定性分析和评价具有重要意义。本文提出一种基于NGO—DBSCAN算法的岩体优势结构面智能识别方法。在密度聚类算法的基础上融合北方苍鹰优化算法,旨在提高算法的鲁棒性和结果的准确性,减少人工调参... 结构面的准确识别与提取,对于岩体工程稳定性分析和评价具有重要意义。本文提出一种基于NGO—DBSCAN算法的岩体优势结构面智能识别方法。在密度聚类算法的基础上融合北方苍鹰优化算法,旨在提高算法的鲁棒性和结果的准确性,减少人工调参工作量。首先,通过k最近邻算法和主成分分析法进行邻点共面性测试分析;其次,采用核密度估计法寻找主方向;最后,基于NGO-DBSCAN算法实现岩体结构面的智能识别。案例结果表明:本文提出的方法不仅能够精准地识别出平滑的结构面,还能有效检测出破碎的小结构面,甚至包括那些表面粗糙度较大的面,并与众多研究者的识别结果呈现出较高的一致性。 展开更多
关键词 三维点云 结构面 DBSCAN聚类 北方苍鹰优化算法
下载PDF
An Improved Northern Goshawk Optimization Algorithm for Feature Selection
20
作者 Rongxiang Xie Shaobo Li Fengbin Wu 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第4期2034-2072,共39页
Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address... Feature Selection(FS)is an important data management technique that aims to minimize redundant information in a dataset.This work proposes DENGO,an improved version of the Northern Goshawk Optimization(NGO),to address the FS problem.The NGO is an efficient swarm-based algorithm that takes its inspiration from the predatory actions of the northern goshawk.In order to overcome the disadvantages that NGO is prone to local optimum trap,slow convergence speed and low convergence accuracy,two strategies are introduced in the original NGO to boost the effectiveness of NGO.Firstly,a learning strategy is proposed where search members learn by learning from the information gaps of other members of the population to enhance the algorithm's global search ability while improving the population diversity.Secondly,a hybrid differential strategy is proposed to improve the capability of the algorithm to escape from the trap of the local optimum by perturbing the individuals to improve convergence accuracy and speed.To prove the effectiveness of the suggested DENGO,it is measured against eleven advanced algorithms on the CEC2015 and CEC2017 benchmark functions,and the obtained results demonstrate that the DENGO has a stronger global exploration capability with higher convergence performance and stability.Subsequently,the proposed DENGO is used for FS,and the 29 benchmark datasets from the UCL database prove that the DENGO-based FS method equipped with higher classification accuracy and stability compared with eight other popular FS methods,and therefore,DENGO is considered to be one of the most prospective FS techniques.DENGO's code can be obtained at https://www.mathworks.com/matlabcentral/fileexchange/158811-project1. 展开更多
关键词 northern goshawk optimization Learning strategy Hybrid differential strategy Numerical optimization Feature selection
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部