Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth ...Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth and expansion of the Qinghai-Tibetan Plateau.Since nearly 10 Ma,some significant and typical fold thrust belt have been formed.The spatial-temporal evolution of these fold-thrust belts and the characteristics of surface deformations are significant issues in geodynamics.In this paper,we use the elastoplastic finite element model with considering the contact nonlinearity to study the spatialtemporal evolution of the fold-thrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau,with particular attention to the details of the relationship between the depth and the shallow,the spatialtemporal order,and the characteristics of the surface deformation,etc.,in order to make a relatively complete mechanical interpretation of the spatial-temporal evolution of the foldthrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau from the perspective of geodynamics.展开更多
Fault deformation characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake are investigated through time-series and structural geological analysis based on cross-fault observat...Fault deformation characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake are investigated through time-series and structural geological analysis based on cross-fault observation data from the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt. The results indicate: 1) Group short-term abnormal variations appeared in the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt before the Menyuan Ms6.4 earthquake. 2) More medium and short-term anomalies appear in the middle-eastern segment of the Qilian Mountain Fault belt and the West Qinling Fault belt, suggesting that the faults' activities are strong in these areas. The faults' activities in the middle-eastern segment of the Qilian Fault belt result from extensional stress, as before the earthquake, whereas those in the West Qinling Fault belt are mainly compressional. 3) In recent years, moderate-strong earthquakes occurred in both the Kunlun Mountain and the Qilian Mountain Fault belts, and some energy was released. It is possible that the seismicity moved eastward under this regime. Therefore, we should pay attention to the West Qinling Mountain area where an Ms6-7 earthquake could occur in future.展开更多
Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a compo...Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.展开更多
The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geologica...The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geological data. The main results are summarized as follows: (1) The geotectonic subdivisions and the characteristics of main deep and large faults in the northeastern margin of the Qinghai-Tibetan plateau are presented; (2) The general features of the Moho are obtained mainly based on artificial seismic sounding data; (3) There exists well corresponding relation between surface faults and some features of the Moho, which suggests that such complex crustal structure might be the preparation environment of strong earthquakes.展开更多
Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the so...Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the southeastern margin of the Qinghai-Tibetan Plateau since 1500.This paper provides a periodic table of the earthquake strain energy release in the fault zones and the fault block areas.The study shows that seismic strain energy release is strong in the east and south,and weak in the west and north.The overall seismic strain energy release of the Yushu-Xianshuihe-Xiaojiang fault system is consistent with the quasi-periodic pattern.The seismic cycle of some fault zones and fault block areas shows synchronization to a certain extent.The risk cannot be ignored in the current large release period of seismic strain energy in the southeastern margin of the Qinghai-Tibetan plateau.Local seismic risk analysis shows that seismic risk is very high on the Anninghe-Zemuhe and Xiaojiang fault zones.These dangerous zones need follow-up research.In future,it is necessary to combine different research methods to improve the reliability of seismic risk assessment.展开更多
On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichua...On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichuan-Yunnan,Bayankala,and South China blocks.The tectonic background is extremely complex,and strong earthquakes occur frequently.Based on a predetermined focal location and focal mechanism solution for the earthquake,we reversed the focal depth and rupture process of the earthquake by fitting the teleseismic P and SH waves recorded by the global seismic network.The results show that the focal depth is 16 km,with the main rupture having a length of about 45 km near the epicenter,with a maximum displacement of 1.02 m.Although the rupture mainly propagates from the north–northwest(NNW)to the south–southeast(SSE)along the fault strike,there is a small-scale rupture slip zone at shallow depths in the north–northeast(NNE)direction along the epicenter of the seismogenic fault.This rupture image corresponds to the cluster distribution of aftershocks in the NNW and SSE directions starting from the epicenter,corresponding to the distribution of recorded landslides.The earthquake occurred on the Moxi fault,located in the southeastern section of the Xianshuihe fault.The major tectonic feature in this area is the southeastward movement of the Chuandian block relative to the Bayanhar block.展开更多
New data of oxygen and carbonate isotope in calcite cements from Cenozoic rocks in the Jianggelesayi area to reconstruct the uplift history of mountains in northern edge of the Qinghai-Tibetan Plateau are presented. A...New data of oxygen and carbonate isotope in calcite cements from Cenozoic rocks in the Jianggelesayi area to reconstruct the uplift history of mountains in northern edge of the Qinghai-Tibetan Plateau are presented. Analyses results show that rapid changes of Δ18o and Δ13c in the calcite cement occurred in both the Early Oligocene and Early Miocene. Studies on sedimentary features indicate that a rapid up-coarsing of the sediments size occurred in the Early Miocene, and sedimentary velocity increased rapidly during the Pliocene and Early Quaternary. Thus, it is suggested that the uplift of mountains in the northern edge of the Qinghai-Tibetan Plateau initiated from the Early Oligocene, and a rapid uplift occurred in the early stage of the Miocene, while the sharp difference in topography between the northern plateau and the Tarim Basin predominately formed later than the Miocene.展开更多
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high ...The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area, and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure, shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile (L1) increases from -43 km in the western margin of Ordos Block to -56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s^-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arc-like tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s^-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies (LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10-0.20 krn s^-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2 (Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L 1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation. Moreover, there are low-velocity zones with altemative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15-0.25 km s^-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 kin, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.展开更多
Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution cha...Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution characteristics of deformation anomalies in the northeastern margin of the Qinghai-Tibetan Plateau before and after the Menyuan M_(S)6.9 earthquake were studied by using the Fisher statistical test method. By analyzing the characteristics of these anomalies, we found that: 1) The deformation anomalies are mainly distributed in the marginal front area of the Qinghai-Tibetan Plateau, where short-term deformation anomalies are prone to occur due to a high gradient of gravity;2) The deformation anomalies along the northeastern margin of the Qinghai-Tibetan Plateau are characterized by spatial propagation, and the migration rate is about 2.4 km/d. The propagation pattern is counterclockwise, consistent with the migration direction of M_(S)≥ 6.0 earthquakes;3) The time and location of the Menyuan earthquake are related to the group migration of earthquakes with M_(S)≥ 6.0. Finally,based on the results of gravity field variation and the theory of crust stress wave, the law of deformation anomaly distribution was discussed. We suggest that both the deformation propagation along the northeastern margin of the Qinghai-Tibetan Plateau and the earthquake migration are possibly associated with the variation of the stress field caused by subsurface mass flow.展开更多
基金financially supported by the National Science Foundation of China (42074117)supported by the Fundamental Research Funds for the Central Universities。
文摘Fold-thrust belts are common structural styles under the background of long-term regional tectonic shortening.The northern and northeastern margins of the Qinghai-Tibetan Plateau are located on the edge of the growth and expansion of the Qinghai-Tibetan Plateau.Since nearly 10 Ma,some significant and typical fold thrust belt have been formed.The spatial-temporal evolution of these fold-thrust belts and the characteristics of surface deformations are significant issues in geodynamics.In this paper,we use the elastoplastic finite element model with considering the contact nonlinearity to study the spatialtemporal evolution of the fold-thrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau,with particular attention to the details of the relationship between the depth and the shallow,the spatialtemporal order,and the characteristics of the surface deformation,etc.,in order to make a relatively complete mechanical interpretation of the spatial-temporal evolution of the foldthrust belts in the northern and northeastern margins of the Qinghai-Tibetan Plateau from the perspective of geodynamics.
基金funded by the Special Project of Basic Work of Science and Technology“Compilation and dataprocessing of modern vertical deformation Atlas of Chinese mainland”(2015FY210400)the Science and Technology Innovation Fund(FMC2015013)of the First Crust Monitoring and Application Center,China Earthquake Administration
文摘Fault deformation characteristics in the northern margin of the Tibetan Plateau before the Menyuan Ms6.4 earthquake are investigated through time-series and structural geological analysis based on cross-fault observation data from the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt. The results indicate: 1) Group short-term abnormal variations appeared in the Qilian Mountain-Haiyuan Fault belt and the West Qinling Fault belt before the Menyuan Ms6.4 earthquake. 2) More medium and short-term anomalies appear in the middle-eastern segment of the Qilian Mountain Fault belt and the West Qinling Fault belt, suggesting that the faults' activities are strong in these areas. The faults' activities in the middle-eastern segment of the Qilian Fault belt result from extensional stress, as before the earthquake, whereas those in the West Qinling Fault belt are mainly compressional. 3) In recent years, moderate-strong earthquakes occurred in both the Kunlun Mountain and the Qilian Mountain Fault belts, and some energy was released. It is possible that the seismicity moved eastward under this regime. Therefore, we should pay attention to the West Qinling Mountain area where an Ms6-7 earthquake could occur in future.
基金supported by grants from the National Natural Science Foundation of China(General Program No.40974058)National Science Fund for Distinguished Young Scholars(No.40904025 and 41404060)+4 种基金Fundamental Research Funds for the Central Universities(2652014016)National Natural Science Foundation of ChinaUnited States National Science FoundationScience Foundation of Ireland(award 08/RFP/GEO1693 to AGJ)Natural Science and Engineering Research Council(Canada)for financial support
文摘Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.
基金National Key Research Development Project(95-13-02-02).Contribution No.LC2000052,Lanzhou Institute of Seismology,China SeismologicalBureau.
文摘The geological structure background, the crustal structure and the shape of Moho in the northeastern margin of the Qinghai-Tibetan plateau are studied. Based on artificial seismic sounding profile as well as geological data. The main results are summarized as follows: (1) The geotectonic subdivisions and the characteristics of main deep and large faults in the northeastern margin of the Qinghai-Tibetan plateau are presented; (2) The general features of the Moho are obtained mainly based on artificial seismic sounding data; (3) There exists well corresponding relation between surface faults and some features of the Moho, which suggests that such complex crustal structure might be the preparation environment of strong earthquakes.
基金funded jointly by the China Geological Survey (Project Grant No. 1212011120163, 12120114002101)the National Natural Science Foundation of China (Project Grant No: 41171009)the basal research fund of Institute of Geomechanics,Chinese Academy of Geological Sciences (DXLXJK201410)
文摘Using the methods of the Gutenberg magnitude energy empirical formula and the Benioff seismic strain energy release curve,we make a systematic study on seismic strain energy release of historical earthquakes in the southeastern margin of the Qinghai-Tibetan Plateau since 1500.This paper provides a periodic table of the earthquake strain energy release in the fault zones and the fault block areas.The study shows that seismic strain energy release is strong in the east and south,and weak in the west and north.The overall seismic strain energy release of the Yushu-Xianshuihe-Xiaojiang fault system is consistent with the quasi-periodic pattern.The seismic cycle of some fault zones and fault block areas shows synchronization to a certain extent.The risk cannot be ignored in the current large release period of seismic strain energy in the southeastern margin of the Qinghai-Tibetan plateau.Local seismic risk analysis shows that seismic risk is very high on the Anninghe-Zemuhe and Xiaojiang fault zones.These dangerous zones need follow-up research.In future,it is necessary to combine different research methods to improve the reliability of seismic risk assessment.
基金the Central Publicinterest Scientific Institution Basal Research Fund(2021IEF0501 and CEAIEF20220205)the National Natural Science Foundation of China(42074100).
文摘On September 5,2022,at Beijing time 12:52 p.m.,an M_(S)6.8 earthquake struck Luding County,GarzêTibetan Autonomous Prefecture,Sichuan Province.The epicenter of the earthquake was at the intersection of the Sichuan-Yunnan,Bayankala,and South China blocks.The tectonic background is extremely complex,and strong earthquakes occur frequently.Based on a predetermined focal location and focal mechanism solution for the earthquake,we reversed the focal depth and rupture process of the earthquake by fitting the teleseismic P and SH waves recorded by the global seismic network.The results show that the focal depth is 16 km,with the main rupture having a length of about 45 km near the epicenter,with a maximum displacement of 1.02 m.Although the rupture mainly propagates from the north–northwest(NNW)to the south–southeast(SSE)along the fault strike,there is a small-scale rupture slip zone at shallow depths in the north–northeast(NNE)direction along the epicenter of the seismogenic fault.This rupture image corresponds to the cluster distribution of aftershocks in the NNW and SSE directions starting from the epicenter,corresponding to the distribution of recorded landslides.The earthquake occurred on the Moxi fault,located in the southeastern section of the Xianshuihe fault.The major tectonic feature in this area is the southeastward movement of the Chuandian block relative to the Bayanhar block.
基金supported by the National Natural Science Foundation of China(Grant No.40102022)the Major State Basic Research Program of China(Grant Nos.2001CB409808 and 2001CB7110013).
文摘New data of oxygen and carbonate isotope in calcite cements from Cenozoic rocks in the Jianggelesayi area to reconstruct the uplift history of mountains in northern edge of the Qinghai-Tibetan Plateau are presented. Analyses results show that rapid changes of Δ18o and Δ13c in the calcite cement occurred in both the Early Oligocene and Early Miocene. Studies on sedimentary features indicate that a rapid up-coarsing of the sediments size occurred in the Early Miocene, and sedimentary velocity increased rapidly during the Pliocene and Early Quaternary. Thus, it is suggested that the uplift of mountains in the northern edge of the Qinghai-Tibetan Plateau initiated from the Early Oligocene, and a rapid uplift occurred in the early stage of the Miocene, while the sharp difference in topography between the northern plateau and the Tarim Basin predominately formed later than the Miocene.
基金supported by the Special Projects of Scientific Research of the Earthquake Industry (Grant No. 201408023)the National Natural Science Foundation of China (Grant Nos. 41474076 & 41474077)
文摘The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block, also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area, and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure, shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile (L1) increases from -43 km in the western margin of Ordos Block to -56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s^-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arc-like tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s^-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies (LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10-0.20 krn s^-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2 (Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L 1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation. Moreover, there are low-velocity zones with altemative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15-0.25 km s^-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 kin, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.
基金sponsored by the National Natural Science Foundation of China (41330314)。
文摘Decoding the variation laws of the deformation field before strong earthquakes has long been recognized as an essential issue in earthquake prediction research. In this paper, the temporal and spatial distribution characteristics of deformation anomalies in the northeastern margin of the Qinghai-Tibetan Plateau before and after the Menyuan M_(S)6.9 earthquake were studied by using the Fisher statistical test method. By analyzing the characteristics of these anomalies, we found that: 1) The deformation anomalies are mainly distributed in the marginal front area of the Qinghai-Tibetan Plateau, where short-term deformation anomalies are prone to occur due to a high gradient of gravity;2) The deformation anomalies along the northeastern margin of the Qinghai-Tibetan Plateau are characterized by spatial propagation, and the migration rate is about 2.4 km/d. The propagation pattern is counterclockwise, consistent with the migration direction of M_(S)≥ 6.0 earthquakes;3) The time and location of the Menyuan earthquake are related to the group migration of earthquakes with M_(S)≥ 6.0. Finally,based on the results of gravity field variation and the theory of crust stress wave, the law of deformation anomaly distribution was discussed. We suggest that both the deformation propagation along the northeastern margin of the Qinghai-Tibetan Plateau and the earthquake migration are possibly associated with the variation of the stress field caused by subsurface mass flow.