We present a new method to derive line-of-sight acceleration observables from spacecraft radio tracking data. The observables can be used to estimate the mass and gravity of a natural satellite as a spacecraft flyby. ...We present a new method to derive line-of-sight acceleration observables from spacecraft radio tracking data. The observables can be used to estimate the mass and gravity of a natural satellite as a spacecraft flyby. The corresponding observation model adapts to one-way and two/three-way tracking modes. As a test case for method validation and application, we estimated the mass and degree two gravity field for the Martian moon Phobos using simulated tracking data when the spacecraft Mars Express flew by Phobos on 2013 December 29. We have a few real tracking data during flyby and they will be used to confirm raw data simulation. The main purpose of this paper is to demonstrate the method of line-of-sight acceleration reduction from raw tracking data and the feasibility to estimate mass and gravity of a natural satellite using this type of observable. This novel method is potentially applicable to planet and asteroid gravity field studies combined with Doppler tracking data.展开更多
AIM:To compare visual quality after femtosecond laser in situ keratomileusis(FS-LASIK),between the coaxially sighted corneal light reflex(CSCLR) group and conventional ablation line of sight(LOS) group.METHODS...AIM:To compare visual quality after femtosecond laser in situ keratomileusis(FS-LASIK),between the coaxially sighted corneal light reflex(CSCLR) group and conventional ablation line of sight(LOS) group.METHODS:In total,243 eyes(122 patients) were treated with centration on the CSCLR(visual axis) and 238 eyes(119 patients) treated with centration on the pupil center(LOS).Postoperative outcomes [uncorrected visual acuity(UCVA),best spectacle-corrected visual acuity(BSCVA)],safety index,efficacy index,refractive outcome,ablation center distance from the visual axis,corneal high-order aberrations,subjective discomfort glare and shadowing incidence rate,and contrast sensitivity at 1,3,and 6mo were measured and compared.RESULTS:The mean age was 27.77±7.1y in the CSCLR group and 26.03±7.70 y in the LOS group.Preoperatively,the manifest refraction spherical equivalent(MRSE) was-6.68±2.60 D in the CSCLR group and-6.65±2.68 D in the LOS group.The postoperative UCVA,BSCVA,MRSE(-0.03±0.263 D in the CSCLR group,-0.05±0.265 D in the LOS group),efficacy index(1.04,1.03),and safety index(1.09,1.08) were not significantly different between the groups(all P〉0.05).In total,3% lost one line and more of BSCVA in the CSCLR group,as 9% in the LOS group postoperatively(P〈0.05).The ablation center deviation was 0.20±0.15 mm from the visual axis(Pentacam system default setting;range,0-0.75 mm) in the CSCLR group,and 0.43±0.22 mm(range,0-1.32 mm) in the LOS group(P〈0.0001).Statistically significant greater augmentationof total corneal higher-order aberrations(0.15±0.10 μm and 0.20±0.12 μm respectively,P=0.03) and vertical and horizontal coma(P〈0.0001) were noted in the LOS group.Subjective discomfort glare and shadowing incidence rates were 8.59% and 17.5% in the CSCLR and LOS groups,respectively(P〈0.05).The 1-month postoperative contrast sensitivity visual acuity in the CSCLR group was significantly higher than that in the LOS group on contrast(100%,25%,10%) with a dark background,but there was no significant difference between the groups at 3 or 6m.CONCLUSION:Myopic LASIK centered on the CSCLR achieves significantly lower induction of loss of BSCVA,corneal high-order aberrations,and lower risk of subjective discomfort glare and shadowing,and lower decline in early contrast sensitivity by comparison with centration on the LOS,giving advantages in visual quality postoperatively.展开更多
Line-of-sight clarity and assurance are essential because they are considered the golden rule in wireless network planning,allowing the direct propagation path to connect the transmitter and receiver and retain the st...Line-of-sight clarity and assurance are essential because they are considered the golden rule in wireless network planning,allowing the direct propagation path to connect the transmitter and receiver and retain the strength of the signal to be received.Despite the increasing literature on the line of sight with different scenarios,no comprehensive study focuses on the multiplicity of parameters and basic concepts that must be taken into account when studying such a topic as it affects the results and their accuracy.Therefore,this research aims to find limited values that ensure that the signal reaches the future efficiently and enhances the accuracy of these values’results.We have designed MATLAB simulation and programming programs by Visual Basic.NET for a semi-realistic communication system.It includes all the basic parameters of this system,taking into account the environment’s diversity and the characteristics of the obstacle between the transmitting station and the receiving station.Then we verified the correctness of the system’s work.Moreover,we begin by analyzing and studying multiple and branching cases to achieve the goal.We get several values from the results,which are finite values,which are a useful reference for engineers and designers of wireless networks.展开更多
Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to...Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.展开更多
Based on Lund and Shanklin’s work (1972), methods of calculating Probability of Cloud-Free Lines-of-Sight (PCFLOS), Persistence Probability of Cloud-Free Lines-of-Sight (PPCFLOS) and Recurrence Probability of Cloud-f...Based on Lund and Shanklin’s work (1972), methods of calculating Probability of Cloud-Free Lines-of-Sight (PCFLOS), Persistence Probability of Cloud-Free Lines-of-Sight (PPCFLOS) and Recurrence Probability of Cloud-free Lines-of-Sight (RPCFLOS) at given heights are presented. PCFLOS, PPCFLOS and RPCFLOS are calculated in Foshan, China by conventional observation data from 1961 to 1990. The conclusions are: (1) The higher the elevations, the smaller the PCFLOS and the larger the view angles, the larger the PCFLOS. (2) PPCFLOS and RPCFLOS decrease with the increase of elevation and the delay of time. (3) RPCFLOS is always equal to or larger than PPCFLOS at lag times.展开更多
Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference betwee...Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.展开更多
Line-of-sight MIMQ (LoS MIMO) is not applicable in scattering wireless transmission scenarios, but it may be applied in LoS microwave transmission scenarios if antenna spacing (within transmit and/or receive arrays...Line-of-sight MIMQ (LoS MIMO) is not applicable in scattering wireless transmission scenarios, but it may be applied in LoS microwave transmission scenarios if antenna spacing (within transmit and/or receive arrays) is suitable and there is one hop distance. LoS MIMQ can improve channel capacity and performance of a transmission system. In this paper, we discuss factors affecting channel capacity and performance in LoS MIMO. We also discuss the feasibility LoS MIMO applications.展开更多
The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Si...The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Since buildings are inherently elevated objects, these images need to be co-registered with their elevation data for reliable building detection results. However, accurate co-registration is extremely difficult for off-nadir VHR images acquired over dense urban areas. Therefore, this research proposes a Disparity-Based Elevation Co-Registration (DECR) method for generating a Line-of-Sight Digital Surface Model (LoS-DSM) to efficiently achieve image-elevation data co-registration with pixel-level accuracy. Relative to the traditional photogrammetric approach, the RMSE value of the derived elevations is found to be less than 2 pixels. The applicability of the DECR method is demonstrated through elevation-based building detection (EBD) in a challenging dense urban area. The quality of the detection result is found to be more than 90%. Additionally, the detected objects were geo-referenced successfully to their correct ground locations to allow direct integration with other maps. In comparison to the original LoS-DSM development algorithm, the DECR algorithm is more efficient by reducing the calculation steps, preserving the co-registration accuracy, and minimizing the need for elevation normalization in dense urban areas.展开更多
Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, ...Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications.展开更多
This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from ...This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from vector observations was done to demonstrate that the geometric relation between the reference vectors is an important factor which influences the accuracy of attitude estimation.Then,with introduction of the sun line-of-sight vector,the attitude quaternion obtained from the star-sensor was converted into a pair of mutually perpendicular reference vectors perpendicular to the sun vector.The normalized weights were calculated according to the accuracy of the sensors.Furthermore,the optimal attitude estimation in the least squares sense was achieved with the quaternion estimation method.Finally,the results of simulation demonstrated the validity of the proposed optimal algorithm based on the practical data of the Deep Impact mission.展开更多
The blue-green light in the 450 nm to 550 nm band is usually used in underwater wireless optical communication (UWOC). The blue-green light transmission in seawater is scattered by the seawater effect and can achieve ...The blue-green light in the 450 nm to 550 nm band is usually used in underwater wireless optical communication (UWOC). The blue-green light transmission in seawater is scattered by the seawater effect and can achieve communication in non-line-of-sight (NLOS) transmission mode. Compared to line-of-sight (LOS) transmission, NLOS transmission does not require alignment and can be adapted to various underwater environments. The scattering coefficients of seawater at different depths are different, which makes the scattering of light in different depths of seawater different. In this paper, the received optical power and bit error rate (BER) of the photodetector (PD) were calculated when the scattering coefficients of blue-green light in seawater vary from large to small with increasing depth for NLOS transmission. The results show that blue-green light in different depths of seawater in the same way NLOS communication at the same distance, the received optical power and BER at the receiver are different, and the received optical power of green light is greater than that of blue light. Increasing the forward scattering coverage of the laser will suppress the received optical power of the PD, so when performing NLOS communication, appropriate trade-offs should be made between the forward scattering coverage of the laser and the received optical power.展开更多
针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误...针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.展开更多
基金supported by the National Natural Science Foundation of China (Nos. U1531136, U1831132 and U1531104)Innovation Group of Natural Fund of Hubei Province(2018CFA087)+1 种基金Open Funding of Macao University of Science and Technology (FDCT 119/2017/A3)Open Funding of Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing (KF201813)
文摘We present a new method to derive line-of-sight acceleration observables from spacecraft radio tracking data. The observables can be used to estimate the mass and gravity of a natural satellite as a spacecraft flyby. The corresponding observation model adapts to one-way and two/three-way tracking modes. As a test case for method validation and application, we estimated the mass and degree two gravity field for the Martian moon Phobos using simulated tracking data when the spacecraft Mars Express flew by Phobos on 2013 December 29. We have a few real tracking data during flyby and they will be used to confirm raw data simulation. The main purpose of this paper is to demonstrate the method of line-of-sight acceleration reduction from raw tracking data and the feasibility to estimate mass and gravity of a natural satellite using this type of observable. This novel method is potentially applicable to planet and asteroid gravity field studies combined with Doppler tracking data.
基金Supported by the Natural Science Foundation of Shanghai Municipal Commission of Health and Family Planning(No.20134230)
文摘AIM:To compare visual quality after femtosecond laser in situ keratomileusis(FS-LASIK),between the coaxially sighted corneal light reflex(CSCLR) group and conventional ablation line of sight(LOS) group.METHODS:In total,243 eyes(122 patients) were treated with centration on the CSCLR(visual axis) and 238 eyes(119 patients) treated with centration on the pupil center(LOS).Postoperative outcomes [uncorrected visual acuity(UCVA),best spectacle-corrected visual acuity(BSCVA)],safety index,efficacy index,refractive outcome,ablation center distance from the visual axis,corneal high-order aberrations,subjective discomfort glare and shadowing incidence rate,and contrast sensitivity at 1,3,and 6mo were measured and compared.RESULTS:The mean age was 27.77±7.1y in the CSCLR group and 26.03±7.70 y in the LOS group.Preoperatively,the manifest refraction spherical equivalent(MRSE) was-6.68±2.60 D in the CSCLR group and-6.65±2.68 D in the LOS group.The postoperative UCVA,BSCVA,MRSE(-0.03±0.263 D in the CSCLR group,-0.05±0.265 D in the LOS group),efficacy index(1.04,1.03),and safety index(1.09,1.08) were not significantly different between the groups(all P〉0.05).In total,3% lost one line and more of BSCVA in the CSCLR group,as 9% in the LOS group postoperatively(P〈0.05).The ablation center deviation was 0.20±0.15 mm from the visual axis(Pentacam system default setting;range,0-0.75 mm) in the CSCLR group,and 0.43±0.22 mm(range,0-1.32 mm) in the LOS group(P〈0.0001).Statistically significant greater augmentationof total corneal higher-order aberrations(0.15±0.10 μm and 0.20±0.12 μm respectively,P=0.03) and vertical and horizontal coma(P〈0.0001) were noted in the LOS group.Subjective discomfort glare and shadowing incidence rates were 8.59% and 17.5% in the CSCLR and LOS groups,respectively(P〈0.05).The 1-month postoperative contrast sensitivity visual acuity in the CSCLR group was significantly higher than that in the LOS group on contrast(100%,25%,10%) with a dark background,but there was no significant difference between the groups at 3 or 6m.CONCLUSION:Myopic LASIK centered on the CSCLR achieves significantly lower induction of loss of BSCVA,corneal high-order aberrations,and lower risk of subjective discomfort glare and shadowing,and lower decline in early contrast sensitivity by comparison with centration on the LOS,giving advantages in visual quality postoperatively.
文摘Line-of-sight clarity and assurance are essential because they are considered the golden rule in wireless network planning,allowing the direct propagation path to connect the transmitter and receiver and retain the strength of the signal to be received.Despite the increasing literature on the line of sight with different scenarios,no comprehensive study focuses on the multiplicity of parameters and basic concepts that must be taken into account when studying such a topic as it affects the results and their accuracy.Therefore,this research aims to find limited values that ensure that the signal reaches the future efficiently and enhances the accuracy of these values’results.We have designed MATLAB simulation and programming programs by Visual Basic.NET for a semi-realistic communication system.It includes all the basic parameters of this system,taking into account the environment’s diversity and the characteristics of the obstacle between the transmitting station and the receiving station.Then we verified the correctness of the system’s work.Moreover,we begin by analyzing and studying multiple and branching cases to achieve the goal.We get several values from the results,which are finite values,which are a useful reference for engineers and designers of wireless networks.
文摘Line-of-sight (LOS) link planning condition has been observed to have effects on the atmospheric factor which cause crucial signal loss. The main objective of the planning was to improve a set of a link using point to point condition to assist the performance in emerging its strategy for handling the fixed WLAN service. The purpose of this paper is to provide a quick description of various propagation loss mechanisms on Link Budget Tool (LBT). LBT is customized to create point to point link for local area network (LAN) through radio frequency range operating between 2.400 GHz and 5.800 GHz. This software is able to define the effect of signal loss and expected performances according to the distances between link propagation conditions based on a number of system parameters.
文摘Based on Lund and Shanklin’s work (1972), methods of calculating Probability of Cloud-Free Lines-of-Sight (PCFLOS), Persistence Probability of Cloud-Free Lines-of-Sight (PPCFLOS) and Recurrence Probability of Cloud-free Lines-of-Sight (RPCFLOS) at given heights are presented. PCFLOS, PPCFLOS and RPCFLOS are calculated in Foshan, China by conventional observation data from 1961 to 1990. The conclusions are: (1) The higher the elevations, the smaller the PCFLOS and the larger the view angles, the larger the PCFLOS. (2) PPCFLOS and RPCFLOS decrease with the increase of elevation and the delay of time. (3) RPCFLOS is always equal to or larger than PPCFLOS at lag times.
基金funded by Project Number INML2104 under the Interdisciplinary Center of Smart Mobility and Logistics at King Fahd University of Petroleum and Minerals.This study also was supported by the Special Research Fund BOF23KV17.
文摘Recently,Internet of Drones(IoD)has garnered significant attention due to its widespread applications.However,deploying IoD for area coverage poses numerous limitations and challenges.These include interference between neighboring drones,the need for directional antennas,and altitude restrictions for drones.These challenges necessitate the development of efficient solutions.This research paper presents a cooperative decision-making approach for an efficient IoDdeployment to address these challenges effectively.The primary objective of this study is to achieve an efficient IoDdeployment strategy thatmaximizes the coverage regionwhile minimizing interference between neighboring drones.In deployment problem,the interference increases as the number of deployed drones increases,resulting in bad quality of communication.On the other hand,deploying a few drones cannot satisfy the coverage demand.To accomplish this,an enhanced version of a concise population-based meta-heuristic algorithm,namely Improved Particle SwarmOptimization(IPSO),is applied.The objective function of IPSO is defined based on the coverage probability,which is primarily influenced by the characteristics of the antennas and drone altitude.A radio frequency(RF)model is derived to evaluate the coverage quality,considering both Line of Sight(LOS)and Non-Line of Sight(NLOS)down-link coverage probabilities for ground communication.It is assumed that each drone is equipped with a directional antenna to optimize coverage in a given region.Extensive simulations are conducted to assess the effectiveness of the proposed approach.Results demonstrate that the proposed method achieves maximum coverage with minimum transmission power.Furthermore,a comparison is made against Collaborative Visual Area Coverage Approach(CVACA),and a game-based approach in terms of coverage quality and convergence speed.The simulation results reveal that our approach outperforms both CVACA and the gamebased schemes in terms of coverage and convergence speed.Comparisons validate the superiority of our approach over existing methods.To assess the robustness of the proposed RFmodel,we have considered two distinct ranges of noise:range1 spanning from−120 to−90 dBm,and range2 spanning from−90 to−70 dBmfor different numbers of UAVs.In summary,this research presents a cooperative decision-making approach for efficient IoD deployment to address the challenges associatedwith area coverage and achieves an optimal coveragewithminimal interference.
文摘Line-of-sight MIMQ (LoS MIMO) is not applicable in scattering wireless transmission scenarios, but it may be applied in LoS microwave transmission scenarios if antenna spacing (within transmit and/or receive arrays) is suitable and there is one hop distance. LoS MIMQ can improve channel capacity and performance of a transmission system. In this paper, we discuss factors affecting channel capacity and performance in LoS MIMO. We also discuss the feasibility LoS MIMO applications.
文摘The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Since buildings are inherently elevated objects, these images need to be co-registered with their elevation data for reliable building detection results. However, accurate co-registration is extremely difficult for off-nadir VHR images acquired over dense urban areas. Therefore, this research proposes a Disparity-Based Elevation Co-Registration (DECR) method for generating a Line-of-Sight Digital Surface Model (LoS-DSM) to efficiently achieve image-elevation data co-registration with pixel-level accuracy. Relative to the traditional photogrammetric approach, the RMSE value of the derived elevations is found to be less than 2 pixels. The applicability of the DECR method is demonstrated through elevation-based building detection (EBD) in a challenging dense urban area. The quality of the detection result is found to be more than 90%. Additionally, the detected objects were geo-referenced successfully to their correct ground locations to allow direct integration with other maps. In comparison to the original LoS-DSM development algorithm, the DECR algorithm is more efficient by reducing the calculation steps, preserving the co-registration accuracy, and minimizing the need for elevation normalization in dense urban areas.
基金supported by the National Science and Technology Major Project of China(Grant No.AHJ2011Z001)the Major Research Project of Yili Normal University(Grant No.2016YSZD05)
文摘Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface(diffuser).It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications.
文摘This paper proposed an optimal algorithm using the sun line-of-sight vector to improve the probe attitude estimation accuracy in deep-space mission.Firstly,the elaborate analysis of the attitude estimation error from vector observations was done to demonstrate that the geometric relation between the reference vectors is an important factor which influences the accuracy of attitude estimation.Then,with introduction of the sun line-of-sight vector,the attitude quaternion obtained from the star-sensor was converted into a pair of mutually perpendicular reference vectors perpendicular to the sun vector.The normalized weights were calculated according to the accuracy of the sensors.Furthermore,the optimal attitude estimation in the least squares sense was achieved with the quaternion estimation method.Finally,the results of simulation demonstrated the validity of the proposed optimal algorithm based on the practical data of the Deep Impact mission.
文摘The blue-green light in the 450 nm to 550 nm band is usually used in underwater wireless optical communication (UWOC). The blue-green light transmission in seawater is scattered by the seawater effect and can achieve communication in non-line-of-sight (NLOS) transmission mode. Compared to line-of-sight (LOS) transmission, NLOS transmission does not require alignment and can be adapted to various underwater environments. The scattering coefficients of seawater at different depths are different, which makes the scattering of light in different depths of seawater different. In this paper, the received optical power and bit error rate (BER) of the photodetector (PD) were calculated when the scattering coefficients of blue-green light in seawater vary from large to small with increasing depth for NLOS transmission. The results show that blue-green light in different depths of seawater in the same way NLOS communication at the same distance, the received optical power and BER at the receiver are different, and the received optical power of green light is greater than that of blue light. Increasing the forward scattering coverage of the laser will suppress the received optical power of the PD, so when performing NLOS communication, appropriate trade-offs should be made between the forward scattering coverage of the laser and the received optical power.
文摘针对超宽带(ultra wide band,UWB)定位中影响定位精度的非视距(non line of sight,NLoS)传播误差问题,提出了一种基于Kalman滤波的NLoS误差二次消除方法.该方法利用NLoS误差与测量误差之间的相互独立性,借助Kalman滤波将NLoS误差从总误差中单独分离出来,对其进行实时估计,并将该NLoS误差估计值作为NLoS误差辨别及测距值修正的依据.通过Kalman滤波对到达时间(time of arrival,TOA)测距值进行二次估计、鉴别及修正以提高TOA测距精度,从而实现室内复杂环境下的UWB精准实时定位.仿真实验结果表明:该方法不仅能够对NLoS误差实现良好的跟踪估计,对视距(line of sight,LoS)/NLoS环境转变也具有较强的灵敏感知能力,同时NLoS误差测距值在应用该方法后的定位性能逼近于LoS环境下的理想状态.