Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Dopple...Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.展开更多
We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase lockin...We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.展开更多
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t...Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.展开更多
To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.Howeve...To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.展开更多
Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns...Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.展开更多
Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum ...Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.展开更多
Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a maj...Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a major health concern. Objectives: To determine the frequency of neonatal macrosomia, describe risk factors and neonatal and maternal complications. Materials and methods: This was a cross-sectional study carried out between January and December 2022, involving newborns whose birth weight was greater than or equal to 4000 grams admitted to the neonatology unit of the Labe regional hospital. Results: 591 deliveries were recorded, 15 of which were macrosomic, representing a frequency of 2.54%. The average age of the women was 30.26 years. History of fetal macrosomia and diabetes was 93.33 and 71.43% respectively. The mean gestational age was 38.71 ± 0.75 SA, the mean antenatal consultation was 3 ± 0.8 and the mode of delivery was caesarean section (66.67%). Third-trimester ultrasound was performed in 53.33% of cases. Macrosomic newborns were male in 80% of cases. Neonatal complications were asphyxia (60%), hypoglycemia (20%) and hypocalcemia (13.33%). Factors associated with neonatal macrosomia were diabetes (P < 0.001), history of macrosomia (P Conclusion: this study shows that the frequency of neonatal macrosomia is 2.54% with high neonatal morbidity among newborns hospitalized in the neonatology unit of the Labé regional hospital. Screening for macrosomia risk factors during pregnancy is essential to prevent perinatal complications.展开更多
As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digi...As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.展开更多
Introduction: Mechanical complications after osteosynthesis are spontaneous and harmful modifications of the joint compromising the consolidation process. The aim of this study is to report on the frequency of these c...Introduction: Mechanical complications after osteosynthesis are spontaneous and harmful modifications of the joint compromising the consolidation process. The aim of this study is to report on the frequency of these complications and their management in the Orthopaedic-Traumatology Department of CHU Ignace Deen. Patients and Methods: we conducted a retrospective descriptive and analytical cross-sectional study from January 2017 to December 2022. It focused on the records of patients hospitalized and treated in the department for a mechanical complication after osteosynthesis. Results: The frequency of mechanical complications was 1.2%, with an average age of 44.2 years and a sex ratio of 3.2 in favor of men. Non-compliance with postoperative instructions, non-compliance with surgical technique, postoperative infection and early loading were the main contributing factors. Disassembly of the screw-plate was the most common cause in 6 cases (35.5%), with a mean delay of 4.1 months. Revision osteosynthesis was carried out using screw plates in 8 cases (47.1%). Conclusion: Mechanical complications of osteosynthesis are less frequent traumatic conditions in our department. Several factors contribute to their occurrence.展开更多
Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the conditio...Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.展开更多
Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ...Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.展开更多
Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping appro...Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.展开更多
Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing...Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.展开更多
The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the...The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.展开更多
Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency t...Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.展开更多
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol o...Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol optical thickness(AOT),and wind speed(WS)in the Bohai Sea were analyzed from the perspective of time domain and frequency domain.Results indicate that the frequency domain analysis was more conducive to revealing the correlations between Chl a and environmental factors.The spatial pattern of time-domain correlations was similar to the isobaths of the Bohai Sea,which was positive in shallow waters and negative in deep waters for SST,PAR,and AOT,and was reversed for WS.Frequency-domain correlations were obtained by performing Fourier Transform and were higher than correlations in time domain.The spatial distributions indicated that the effects of SST and PAR on Chl a were greater than AOT and WS in the Bohai Sea.Additionally,cross-spectrum analysis was applied to explore the response relationships.A depth-dependent pattern was shown in correlations and time lags,indicating that the influential mechanism of environmental factors on Chl-a concentration is related to seawater depth.展开更多
The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un...The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
Currently,both regulated and deregulated power trading exist in China’s power system,which has caused imbalanced funds in the electricity market.In this paper,a simulation analysis of the electricity market with wind...Currently,both regulated and deregulated power trading exist in China’s power system,which has caused imbalanced funds in the electricity market.In this paper,a simulation analysis of the electricity market with wind energy resources is conducted,and the calculation methods of unbalanced funds are investigated systematically.In detail,the calculation formulas of unbalanced funds are illustrated based on their definition,and a two-track electricity market clearing model is established.Firstly,the concept of the dual-track system is explained,and the specific calculation formulas of various types of unbalanced funds are provided.Next,considering the renewable energy consumption,the market clearing model based on DC power flow is constructed and solved;by combining fitting methods of mid-and long-term curves,the unbalanced funds are calculated based on clearing results and formulas.展开更多
文摘Orthogonal Time Frequency and Space(OTFS) modulation is expected to provide high-speed and ultra-reliable communications for emerging mobile applications, including low-orbit satellite communications. Using the Doppler frequency for positioning is a promising research direction on communication and navigation integration. To tackle the high Doppler frequency and low signal-to-noise ratio(SNR) in satellite communication, this paper proposes a Red and Blue Frequency Shift Discriminator(RBFSD) based on the pseudo-noise(PN) sequence.The paper derives that the cross-correlation function on the Doppler domain exhibits the characteristic of a Sinc function. Therefore, it applies modulation onto the Delay-Doppler domain using PN sequence and adjusts Doppler frequency estimation by red-shifting or blue-shifting. Simulation results show that the performance of Doppler frequency estimation is close to the Cramér-Rao Lower Bound when the SNR is greater than -15dB. The proposed algorithm is about 1/D times less complex than the existing PN pilot sequence algorithm, where D is the resolution of the fractional Doppler.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12103059,12033007,12303077,and 12303076)the Fund from the Xi’an Science and Technology Bureau,China(Grant No.E019XK1S04)the Fund from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.1188000XGJ).
文摘We demonstrate coherent optical frequency dissemination over a distance of 972 km by cascading two spans where the phase noise is passively compensated for.Instead of employing a phase discriminator and a phase locking loop in the conventional active phase control scheme,the passive phase noise cancellation is realized by feeding double-trip beat-note frequency to the driver of the acoustic optical modulator at the local site.This passive scheme exhibits fine robustness and reliability,making it suitable for long-distance and noisy fiber links.An optical regeneration station is used in the link for signal amplification and cascaded transmission.The phase noise cancellation and transfer instability of the 972-km link is investigated,and transfer instability of 1.1×10^(-19)at 10^(4)s is achieved.This work provides a promising method for realizing optical frequency distribution over thousands of kilometers by using fiber links.
基金supports from the National Natural Science Foundation of China(12074123,12174108)the Foundation of‘Manufacturing beyond limits’of Shanghai‘Talent Program'of Henan Academy of Sciences.
文摘Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL.
基金funded by Jilin Province Science and Technology Development Plan Projects(20230508157RC)the National Natural Science Foundation of China(U2066208).
文摘To ensure frequency stability in power systems with high wind penetration,the doubly-fed induction generator(DFIG)is often used with the frequency fast response control(FFRC)to participate in frequency response.However,a certain output power suppression amount(OPSA)is generated during frequency support,resulting in the frequency modulation(FM)capability of DFIG not being fully utilised,and the system’s unbalanced power will be increased during speed recovery,resulting in a second frequency drop(SFD)in the system.Firstly,the frequency response characteristics of the power system with DFIG containing FFRC are analysed.Then,based on the analysis of the generation mechanism of OPSA and SFD,a combined wind-storage FM control strategy is proposed to improve the system’s frequency response characteristics.This strategy reduces the effect of OPSA and improves the FM capability of DFIG by designing the fuzzy logic of the coefficients of FFRC according to the system frequency index in the frequency support stage.During the speed recovery stage,the energy storage(ES)active power reference value is calculated according to the change of DFIG rotor speed,and the ES output power is dynamically adjusted to reduce the SFD.Finally,taking the IEEE 39-bus test system as an example,real-time digital simulation verification was conducted based on the RTLAB OP5707 simulation platform.The simulation results showthat theproposedmethodcan improve theFMcapabilityofDFIG,reduce the SFDunder thepremise of guaranteeing the rapid rotor speed recovery,and avoid the overshooting phenomenon so that the systemfrequency can be quickly restored to a stable state.
基金supported by a National Health and Medical Research Council(NHMRC)Investigator Grant(APP2008702)supported by the National Council for Scientific and Technological Developments-CNPq(process number 308772/2022-9)。
文摘Background:Optimal patterns of accrual of recommended levels of physical activity(PA)for prevention of hypertension and obesity are not known.The overall aim of this study was to investigate whether different patterns of accumulation of PA are differentially associated with hypertension and obesity in Australian women over 21 years.Specifically,we investigated whether,for the same weekly volume of PA,the number of sessions(frequency)and vigorousness of PA(intensity)were associated with a reduction in the occurrence of hypertension and obesity in women.Methods:Data from the 1973-1978 and 1946-1951 cohorts of the Australian Longitudinal Study on Women's Health were analyzed(n=20,588;12%-16%with a Bachelor's or higher degree).Self-reported PA,hypertension,height,and weight were collected using mail surveys every 3 years from 1998/2000 to 2019/2021.Generalized Estimating Equation models with a 3-year lag model were used to investigate the association of PA volume(metabolic equivalent min/week)(none;33-499;500-999;≥1000,weekly frequency(none;1-2 times;3-4times;5-7 times;≥8 times),and the proportion of vigorous PA to total volume of PA(none;0%;1%-33%;34%-66%;67%-100%)with odds of hypertension and obesity from 2000 to 2021.Results:The cumulative incidence of hypertension was 6%in the 1973-1978 and 23%in the 1946-1951 cohort;27%of women in the 1973-1978;and 15%in the 1946-1951 cohort developed obesity over the period.Overall,a higher volume of PA was associated with reduced odds of hypertension and obesity.When the volume of PA was considered,the odds of hypertension did not vary according to the frequency or intensity of PA.However,increased proportion of vigorous PA to the total volume of PA was associated with a small additional reduction in the risk of obe sity.Conclusion:PA volume appears to be more important than the pattern of accumulation for the prevention of hypertension and obesity.Incorporating more sessions,particularly of vigorous-intensity PA,may provide extra benefits for the prevention of obesity.
基金Project supported by the National Natural Science Foundation of China(Grant No.62375140)。
文摘Various strategies have been proposed to harness and protect space-like quantum correlations in different models under decoherence.However,little attention has been given to temporal-like correlations,such as quantum temporal steering(TS),in this context.In this work,we investigate TS in a frequency-modulated two-level system coupled to a zero-temperature reservoir in both the weak and strong coupling regimes.We analyze the impact of various frequency-modulated parameters on the behavior of TS and non-Markovian.The results demonstrate that appropriate frequency-modulated parameters can enhance the TS of the two-level system,regardless of whether the system is experiencing Markovian or non-Markovian dynamics.Furthermore,a suitable ratio between modulation strength and frequency(i.e.,all zeroes of the 0th Bessel function J_(0)(δ/?))can significantly enhance TS in the strong coupling regime.These findings indicate that efficient and effective manipulation of quantum TS can be achieved through a frequency-modulated approach.
文摘Macrosomia is defined as a term birth weight greater than or equal to 4000 grams, or greater than the 90 percentile of intrauterine growth curves. Excessive weight has harmful consequences for the newborn and is a major health concern. Objectives: To determine the frequency of neonatal macrosomia, describe risk factors and neonatal and maternal complications. Materials and methods: This was a cross-sectional study carried out between January and December 2022, involving newborns whose birth weight was greater than or equal to 4000 grams admitted to the neonatology unit of the Labe regional hospital. Results: 591 deliveries were recorded, 15 of which were macrosomic, representing a frequency of 2.54%. The average age of the women was 30.26 years. History of fetal macrosomia and diabetes was 93.33 and 71.43% respectively. The mean gestational age was 38.71 ± 0.75 SA, the mean antenatal consultation was 3 ± 0.8 and the mode of delivery was caesarean section (66.67%). Third-trimester ultrasound was performed in 53.33% of cases. Macrosomic newborns were male in 80% of cases. Neonatal complications were asphyxia (60%), hypoglycemia (20%) and hypocalcemia (13.33%). Factors associated with neonatal macrosomia were diabetes (P < 0.001), history of macrosomia (P Conclusion: this study shows that the frequency of neonatal macrosomia is 2.54% with high neonatal morbidity among newborns hospitalized in the neonatology unit of the Labé regional hospital. Screening for macrosomia risk factors during pregnancy is essential to prevent perinatal complications.
基金supported in part by the National Natural Science Foundation of China (NSFC) under Grants 62131005, 62071096in part by the Fundamental Research Funds for the Central Universities under Grant 2242022k60006+1 种基金in part by the National NSFC under Grant U19B2014in part by the Natural Science Foundation of Sichuan under Grant 2022NSFSC0495
文摘As modern electromagnetic environments are more and more complex,the anti-interference performance of the synchronization acquisition is becoming vital in wireless communications.With the rapid development of the digital signal processing technologies,some synchronization acquisition algorithms for hybrid direct-sequence(DS)/frequency hopping(FH)spread spectrum communications have been proposed.However,these algorithms do not focus on the analysis and the design of the synchronization acquisition under typical interferences.In this paper,a synchronization acquisition algorithm based on the frequency hopping pulses combining(FHPC)is proposed.Specifically,the proposed algorithm is composed of two modules:an adaptive interference suppression(IS)module and an adaptive combining decision module.The adaptive IS module mitigates the effect of the interfered samples in the time-domain or the frequencydomain,and the adaptive combining decision module can utilize each frequency hopping pulse to construct an anti-interference decision metric and generate an adaptive acquisition decision threshold to complete the acquisition.Theory and simulation demonstrate that the proposed algorithm significantly enhances the antiinterference and anti-noise performances of the synchronization acquisition for hybrid DS/FH communications.
文摘Introduction: Mechanical complications after osteosynthesis are spontaneous and harmful modifications of the joint compromising the consolidation process. The aim of this study is to report on the frequency of these complications and their management in the Orthopaedic-Traumatology Department of CHU Ignace Deen. Patients and Methods: we conducted a retrospective descriptive and analytical cross-sectional study from January 2017 to December 2022. It focused on the records of patients hospitalized and treated in the department for a mechanical complication after osteosynthesis. Results: The frequency of mechanical complications was 1.2%, with an average age of 44.2 years and a sex ratio of 3.2 in favor of men. Non-compliance with postoperative instructions, non-compliance with surgical technique, postoperative infection and early loading were the main contributing factors. Disassembly of the screw-plate was the most common cause in 6 cases (35.5%), with a mean delay of 4.1 months. Revision osteosynthesis was carried out using screw plates in 8 cases (47.1%). Conclusion: Mechanical complications of osteosynthesis are less frequent traumatic conditions in our department. Several factors contribute to their occurrence.
基金Project supported by the National Key Research and Development Program of China(Grant No.2020YFB0408300)the National Natural Science Foundation of China(Grant No.62175246)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.22ZR1471100)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.YIPA2021244)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701).
文摘Future inter-satellite clock comparison on high orbit will require optical time and frequency transmission technology between moving objects.Here,we demonstrate robust optical frequency transmission under the condition of variable link distance.This variable link is accomplished by the relative motion of a single telescope fixed on the experimental platform to a corner-cube reflector(CCR)installed on a sliding guide.Two acousto–optic modulators with different frequencies are used to separate forward signal from backward signal.With active phase noise suppression,when the CCR moves back and forth at a constant velocity of 20 cm/s and an acceleration of 20 cm/s^(2),we achieve the best frequency stability of 1.9×10^(-16) at 1 s and 7.9×10^(-19) at 1000 s indoors.This work paves the way for future studying optical frequency transfer between ultra-high-orbit satellites.
基金supported by the National Natural Science Foundation of China (No.51975293)Aeronautical Science Foundation of China (No.2019ZD052010)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20230502)。
文摘Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2021YFA0718300 and 2021YFA1400900)the National Natural Science Foundation of China(Grant Nos.11920101004,11934002,and 92365208)+1 种基金Science and Technology Major Project of Shanxi(Grant No.202101030201022)Space Application System of China Manned Space Program.
文摘Raman lasers are essential in atomic physics,and the development of portable devices has posed requirements for time-division multiplexing of Raman lasers.We demonstrate an innovative gigahertz frequency hopping approach of a slave Raman laser within an optical phase-locked loop(OPLL),which finds practical application in an atomic gravimeter,where the OPLL frequently switches between near-resonance lasers and significantly detuned Raman lasers.The method merges the advantages of rapid and extensive frequency hopping with the OPLL’s inherent low phase noise,and exhibits a versatile range of applications in compact laser systems,promising advancements in portable instruments.
基金National Natural Science Foundation of China under Grant No.52178114Jiangsu Association for Science and Technology Youth Science and Technology Talent Support Project No.2021-79。
文摘Local control parameters such as instantaneous delay and instantaneous amplitude play an essential role in evaluating the performance and maintaining the stability of real-time hybrid simulation(RTHS).However,existing methods have limitations in obtaining this local assessment in either the time domain or frequency domain.In this study,the instantaneous frequency is introduced to determine local control parameters for actuator tracking assessment in a real-time hybrid simulation.Instantaneous properties,including amplitude,delay,frequency and phase,are then calculated based on analytic signals translated from actuator tracking signals through the Hilbert transform.Potential issues are discussed and solutions are proposed for calculation of local control parameters.Numerical simulations are first conducted for sinusoidal and chirp signals with time varying amplitude error and delay to demonstrate the potential of the proposed method.Laboratory tests also are conducted for a predefined random signal as well as the RTHS of a single degree of freedom structure with a self-centering viscous damper to experimentally verify the effectiveness of the proposed use of the instantaneous frequency.Results from the ensuing analysis clearly demonstrate that the instantaneous frequency provides great potential for local control assessment,and the proposed method enables local tracking parameters with good accuracy.
基金the National Natural Science Foun-dation of China(Grant Nos.91963201 and 12174163)the 111 Project(Grant No.B20063).
文摘The lack of soft magnetic composites with high power density in MHz frequency range has become an obstacle in the efficient operation of the electrical and electronic equipments.Here,a promising method to increase the cut-off frequency of iron-based soft magnetic composites to hundreds of MHz is reported.The cut-off frequency is increased from 10 MHz to 1 GHz by modulating the height of the ring,the distribution of particles,and the particle size.The mechanism of cut-off frequency and permeability is the coherent rotation of domain modulated by inhomogeneous field due to the eddy current effect.An empirical formula for the cut-off frequency in a magnetic ring composed of iron-based particles is established from experimental data.This work provides an effective approach to fabricate soft magnetic composites with a cut-off frequency in hundreds of MHz.
基金support of the National Natural Sci-ence Foundation of China(NSFC)(62305373)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA1502040404,XDB2101040004).
文摘Optical frequency combs,as powerful tools for precision spectroscopy and research into optical frequency standards,have driven continuous progress and significant breakthroughs in applications such as time-frequency transfer,measurement of fundamental physical constants,and high-precision ranging,achieving a series of milestone results in ground-based environments.With the continuous maturation and evolution of femtosecond lasers and related technologies,optical frequency combs are moving from ground-based applications to astronomical and space-based applications,playing an increasingly important role in atomic clocks,exoplanet observations,gravitational wave measurements,and other areas.This paper,focusing on astronomical and space-based applications,reviews research progress on astronomical frequency combs,optical clock time-frequency networks,gravitational waves,dark matter measurement,dual-comb large-scale absolute ranging,and high-resolution atmospheric spectroscopy.With enhanced performance and their gradual application in the field of space-based research,optical frequency combs will undoubtedly provide more powerful support for astronomical science and cosmic exploration in the future.
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
基金Supported by the Key Research and Development Program of 14 th Five year Plan of China(No.2021YFC3200401-04)the Major Scientific and Technological Projects of Tianjin(No.18 ZXRHSF00270)。
文摘Based on the reconstructed MODIS data and ECMWF reanalysis data from 2003 to 2021,spatial correlations between chlorophyll a(Chl a)and sea surface temperature(SST),photosynthetically available radiation(PAR),aerosol optical thickness(AOT),and wind speed(WS)in the Bohai Sea were analyzed from the perspective of time domain and frequency domain.Results indicate that the frequency domain analysis was more conducive to revealing the correlations between Chl a and environmental factors.The spatial pattern of time-domain correlations was similar to the isobaths of the Bohai Sea,which was positive in shallow waters and negative in deep waters for SST,PAR,and AOT,and was reversed for WS.Frequency-domain correlations were obtained by performing Fourier Transform and were higher than correlations in time domain.The spatial distributions indicated that the effects of SST and PAR on Chl a were greater than AOT and WS in the Bohai Sea.Additionally,cross-spectrum analysis was applied to explore the response relationships.A depth-dependent pattern was shown in correlations and time lags,indicating that the influential mechanism of environmental factors on Chl-a concentration is related to seawater depth.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51901163 and 12104171)the Fundamental Research Funds for the Central Universities(Grant No.2021XXJS025).
文摘The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金supported by a grant from the fund:State Grid Inner Mongolia East Power Co.,Ltd.Science and Technology Project(SGMDTL00YWJS2200994).
文摘Currently,both regulated and deregulated power trading exist in China’s power system,which has caused imbalanced funds in the electricity market.In this paper,a simulation analysis of the electricity market with wind energy resources is conducted,and the calculation methods of unbalanced funds are investigated systematically.In detail,the calculation formulas of unbalanced funds are illustrated based on their definition,and a two-track electricity market clearing model is established.Firstly,the concept of the dual-track system is explained,and the specific calculation formulas of various types of unbalanced funds are provided.Next,considering the renewable energy consumption,the market clearing model based on DC power flow is constructed and solved;by combining fitting methods of mid-and long-term curves,the unbalanced funds are calculated based on clearing results and formulas.