Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-h...Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-heptane catalytic cracking reaction.Diffusional measurements by zero-length column(ZLC)method showed that the apparent diffusivities of n-heptane decreased with the reduction of particle size,indicating the existence of surface barriers.Moreover,with the decrease of particle size,the additional diffusion path length increased,which meant the influence of surface barriers became more apparent.Despite the change of surface barriers,the intracrystalline diffusion still dominated the overall diffusion.Catalytic performance showed that the zeolite with smaller particle size had better stability.展开更多
Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheet...Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheets with and without crack notch were designed to carry out in-situ tensile experiments under 150℃(the same temperature of rolling),with the aim to understand their crack propagation mechanism.The scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)techniques were utilized to reveal microstructural evolution in real time at designated displacements.The results show that the prismatic slip,basal slip,and extension twining play synergistic role in coordinating strain during the tensile process in ZM21 alloy sheet at 150℃.In both tensile samples with and without crack notch,localized strain is mainly concentrated at relatively fine grain area and the grain boundaries or triple junctions of the grains with large basal Schmid factor(SF)difference,which eventually leads to severe surface roughening and subsequent crack initiation.Compared with the sample without crack notch,the pre-cracked sample exhibits severer deformation at the crack tip due to strain concentration.Strain gradient distribution is observed at the crack tip region in the pre-cracked sample.The crack propagation path of the sample with pre-crack is identified and the underlying mechanism is also discussed.展开更多
The effect of notch depth on the cryogenic fracture behavior has been studied using a low car- bon steel.An analysis was made for the fracture features at T_c~*(cryogenic brittleness-char- acteristic temperature)at wh...The effect of notch depth on the cryogenic fracture behavior has been studied using a low car- bon steel.An analysis was made for the fracture features at T_c~*(cryogenic brittleness-char- acteristic temperature)at which the facture load reaehes a valley value.Furthermore,accord- ing to the experimental results and engineering design practice,a concept of critical notch (crack)'size for cryogenic brittleness,a_c,as well as its limit value a_c~*,was put forward and recommended to be a basic characteristic parameter for controlling the brittleness. Mathematical derivation was carried out to give the expression of a_c and a_c~*,the reliability of which was verified by the modeling tests under both static and cyclic loading conditions.展开更多
5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation beh...5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.展开更多
In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen...In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.展开更多
In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a ...In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.展开更多
The microcapsule-contained self-healing materials are appealing since they can heal the cracks automatically and be effective for a long time.Although many experiments have been carried out,the influence of the size o...The microcapsule-contained self-healing materials are appealing since they can heal the cracks automatically and be effective for a long time.Although many experiments have been carried out,the influence of the size of microcapsules on the self-healing effect is still not well investigated.This study uses the two-dimensional discrete element method(DEM)to investigate the interaction between one microcapsule and one microcrack.The influence of the size of microcapsules is considered.The potential healing time and the influence of the initial damage are studied.The results indicate that the coalescence crack is affected by the size of holes.The elastic modulus,the compressive strength and the coalescence stress decrease with the rising radius of holes.The initial damage in experiments should be greater than 95%of the compressive strength to enhance the self-healing effect.The large microcapsules require slight initial damage.Both a new type of displacement field near the crack and a new category of coalescence crack are observed.The influence of sizes of holes on the cracking behavior of concrete with a circular hole and a pre-existing crack is clarified.展开更多
Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still lim...Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still limited. In the present paper, the effect of coarse aggregate size (single grade of 5~10, 10~16, 16~20 and 20~25 mm) on stress-crack opening (σ-w) relation in normal and high strength concretes (compressive strength of 40 and 80 MPa, respectively) was studied. The investigation was based on three-point bending tests implemented by fictitious crack analysis. The result shows that coarse aggregate size and cement matrix strength significantly influence the shape of σ-w curve. For a given total aggregate content, in normal strength concrete, smaller size of aggregate leads to a high tensile strength and a sharp stress drop after the peak stress. The smaller the coarse aggregate, the steeper the σ-w curve. By contrast, in high strength concrete, the effect of aggregate size on σ-w relation almost vanishes. A similar σ-w relation is obtained for the concrete except for the case of 20~25 mm coarse aggregate size. The stress drop after the peak stress is more significant for high strength concrete than that for normal strength concrete. Meanwhile, the smaller the coarse aggregate size, the higher the flexural strength. Fracture energy and characteristic length increase with increasing coarse aggregate size in both normal and high strength concretes.展开更多
Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement fiel...Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement field, there is a phason displacement field in the elasticity of the quasicrystal, which induces an important effect on the mechanical properties of the material and makes an analytical solution difficult to obtain. In this paper, a finite element algorithm for the static elasticity of icosahedral quasicrystals is developed by transforming the elastic boundary value problem of the icosahedral quasicrystals into an equivalent variational problem. Analytical and numerical solutions for an icosahedral A1-Pd-Mn quasicrystal cuboid subjected to a uniaxial tension with different phonon-phason coupling parameters are given to verify the validity of the numerical approach. A comparison between the analytical and numerical solutions of the specimen demonstrates the accuracy and efficiency of the present algorithm. Finally, in order to reveal the fracture behavior of the icosahedral A1-Pd-Mn quasicrystal, a cracked specimen with a finite size of matter is investigated, both with and without phonon-phason coupling. Meanwhile, the geometry factors are calculated, including the stress intensity factor and the crack opening displacement for the finite-size specimen. Computational results reveal the importance of pbonon-phason coupling effect on the icosahedral A1-Pd-Mn quasicrystal. Furthermore, the finite element procedure can be used to solve more complicated boundary value problems.展开更多
Results indicate that under cyclic tension the growth rate of short fatigue crack from notch root will be lowered greatly by tensile pre-loading,but only a little change by compressive pre-loading. The effect of tensi...Results indicate that under cyclic tension the growth rate of short fatigue crack from notch root will be lowered greatly by tensile pre-loading,but only a little change by compressive pre-loading. The effect of tensile pre-loading will decrease with the increase of stress ratio.The variation of short fatigue crack growth rate is related to the residual stress distribution around notch root.展开更多
After finishing 102 replicate constant amplitude crack initiation and growth tests on Ly12-CZ aluminum alloy plate, a statistical investigation of the fatigue crack initiation and growth process is conducted in this p...After finishing 102 replicate constant amplitude crack initiation and growth tests on Ly12-CZ aluminum alloy plate, a statistical investigation of the fatigue crack initiation and growth process is conducted in this paper. According to the post-mortem fractographic examination by scanning electron microscopy (SEM), some qualitative observations of the spacial correlation among fatigue striations are developed to reveal the statistical nature of material intrinsic inhomogeneity during the crack growth process. From the test data, an engineering division between crack initiation and growth is defined as the upper limit of small crack. The distributions of crack initiation life N-i, growth life N, and the statistical characteristics of crack growth rate da/dN are also investigated. It is hoped that the work will provide a solid test basis for the study of probabilistic fatigue, probabilistic fracture mechanics, fatigue reliability and its engineering applications.展开更多
The relation between grain size and strength of the duplex stainless steels and influence of grain size on properties of hydrogen induced cracking in these steels have been investigated. The Hall-Petch relation betwee...The relation between grain size and strength of the duplex stainless steels and influence of grain size on properties of hydrogen induced cracking in these steels have been investigated. The Hall-Petch relation between grain size and strength of the steels is also followed.The susceptibility to hydrogen induced cracking of the steels increases with increasing grain size.展开更多
Cracks are usually observed at the edge of materials deformed by accumulative roll bonding from conventional materials to nanostructure materials. The observed cracks then propagate in the materials during grain refin...Cracks are usually observed at the edge of materials deformed by accumulative roll bonding from conventional materials to nanostructure materials. The observed cracks then propagate in the materials during grain refinement. The cracks propagation affects the yield stress and the effective fracture energy of nanocrystalline materials. In this study, the impacts of crack propagation when measured as a function of grain size variants on nanocrystalline materials’ yield stress are investigated for a material deformed by accumulative roll-bonding. The study employs experimental data and theoretical concepts of severe plastic deformation and cracks processes in nanocrystalline materials. The current studies also focus on nano-cracks that will not lead to rapid materials failure during grain refinement. The study revealed that crack propagation varied as a function of grain size variants during grain refinement. The study also revealed that nano-crack increased during the deformation of nanostructured materials. The study also revealed that the effective fracture energy decreased as grain refinement took place. The study revealed that nanomaterials yield stress decreased with the increase in effective fracture energy. The current study suggests a theoretical model that shows the generation of nanomaterials cracks during grain refinement as a function of grain size variants. In the model, the cracks propagate on nanocrystalline materials due to the compressive load applied to a material. The model predicts that the generation of cracks as functions of grain size variants impacts the energy level in nanocrystalline materials.展开更多
The outstanding thermal,optical,electrical and mechanical properties of molybdenum disolphide(MoS_(2))heterostructures make them exceptional candidates for an extensive area of applications.Nevertheless,despite consid...The outstanding thermal,optical,electrical and mechanical properties of molybdenum disolphide(MoS_(2))heterostructures make them exceptional candidates for an extensive area of applications.Nevertheless,despite considerable technological and academic interest,there is presently a fewinformation regarding the mechanical properties of these novel two-dimensional(2D)materials in the presence of the defects.In thismanuscript,we performed extensive molecular dynamics simulations on pre-cracked and pre-notched all-molybdenum disolphide(MoS_(2))heterostructure systems using ReaxFF force field.Therefore,we study the influence of several central-crack lengths and notch diameters on the mechanical response of 2H phase,1T phase and composite 2H/1T MoS_(2) monolayers with different concentrations of 1T phase in 2H phase,under uniaxial tensile loading at room temperature.Our ReaxFF models reveal that larger cracks and notches decrease the strength of all 2D MoS_(2) single-layer heterostructures.Additionally,for all studied crack and notch sizes,2H phase of MoS_(2) films exhibits the largest strength.Maximum tensile stress of composite 2H/1T MoS_(2) nanosheet with different concentrations are higher than those for the equivalent 1T phase,which implies that the pre-cracked composite structure is remarkably stronger than the equivalent 1T phase.The comparison of the results for cracked and notched all-MoS_(2) nanosheet heterostructures reveal that the load bearing capacity of the notched samples of monolayerMoS_(2) are higher than the cracked ones.展开更多
The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the...The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.展开更多
基金The support from the National Natural Science Foundation of China(22278353)is greatly appreciated。
文摘Single-crystalline hierarchical ZSM-5 zeolites with different particle sizes(namely 100,140,and 200 nm)were successfully prepared by adjusting the amount of tetrapropylammonium hydroxide(TPAOH),and investigated in n-heptane catalytic cracking reaction.Diffusional measurements by zero-length column(ZLC)method showed that the apparent diffusivities of n-heptane decreased with the reduction of particle size,indicating the existence of surface barriers.Moreover,with the decrease of particle size,the additional diffusion path length increased,which meant the influence of surface barriers became more apparent.Despite the change of surface barriers,the intracrystalline diffusion still dominated the overall diffusion.Catalytic performance showed that the zeolite with smaller particle size had better stability.
基金This work was financially supported by the National Key Research and development Program(2021YFB3701000)National Science Foundation of China(No.52071036,U2037601)+1 种基金the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030006)the Independent Research Project of State Key Laboratory of Mechanical Transmissions(SKLMT-ZZKT-2022Z01,SKLMT-ZZKT-2022M12).
文摘Generally,edge crack of rolled magnesium alloy sheets initiates in the RD(rolling direction)-ND(normal direction)plane and then propagate in the RD-TD(transverse direction)plane.Hence,the Mg-2Zn-1.5Mn(ZM21)alloy sheets with and without crack notch were designed to carry out in-situ tensile experiments under 150℃(the same temperature of rolling),with the aim to understand their crack propagation mechanism.The scanning electron microscopy(SEM)and electron backscattered diffraction(EBSD)techniques were utilized to reveal microstructural evolution in real time at designated displacements.The results show that the prismatic slip,basal slip,and extension twining play synergistic role in coordinating strain during the tensile process in ZM21 alloy sheet at 150℃.In both tensile samples with and without crack notch,localized strain is mainly concentrated at relatively fine grain area and the grain boundaries or triple junctions of the grains with large basal Schmid factor(SF)difference,which eventually leads to severe surface roughening and subsequent crack initiation.Compared with the sample without crack notch,the pre-cracked sample exhibits severer deformation at the crack tip due to strain concentration.Strain gradient distribution is observed at the crack tip region in the pre-cracked sample.The crack propagation path of the sample with pre-crack is identified and the underlying mechanism is also discussed.
文摘The effect of notch depth on the cryogenic fracture behavior has been studied using a low car- bon steel.An analysis was made for the fracture features at T_c~*(cryogenic brittleness-char- acteristic temperature)at which the facture load reaehes a valley value.Furthermore,accord- ing to the experimental results and engineering design practice,a concept of critical notch (crack)'size for cryogenic brittleness,a_c,as well as its limit value a_c~*,was put forward and recommended to be a basic characteristic parameter for controlling the brittleness. Mathematical derivation was carried out to give the expression of a_c and a_c~*,the reliability of which was verified by the modeling tests under both static and cyclic loading conditions.
基金financial support and Program of the Ministry of Education in China (2011)。
文摘5083 Al alloy sheets with different grain sizes(8.7-79.2 μm) were obtained by cold rolling and annealing. Their microstructures, intergranular corrosion(IGC), stress corrosion cracking(SCC), and crack propagation behaviors were investigated. The results showed that samples with coarse grains exhibit better IGC resistance with a corrosion depth of 15 μm. The slow strain rate test results revealed that fine-grained samples exhibit better SCC resistance with a susceptibility index(ISSRT) of 11.2%. Furthermore, based on the crack propagation mechanism, grain refinement can improve the SCC resistance by increasing the number of grain boundaries to induce the corrosion crack propagation along a tortuous path. The grains with {011} orientation could hinder crack propagation by orientating it toward the low-angle grain boundary region. The crack in the fine-grained material slowly propagates due to the tortuous path, and low H;and Cl;concentrations.
基金supported by the National Natural Science Foundation of China (21603023)the Petro China Innovation Foundation, China (2014D-5006-0501)~~
文摘In this study, phosphorus modification by trimethyl phosphate impregnation was employed to enhance the hydrothermal stability of nano‐sized HZSM‐5 zeolites. A parallel modification was studied by ammonium dihydrogen phosphate impregnation. The modified zeolites were subjected to steam treatment at 800 °C for 4 h (100% steam) and employed as catalysts for olefin catalyticcracking (OCC) of full‐range fluid catalytic cracking (FCC) gasoline. X‐ray diffraction, N2 physicaladsorption and NH3 temperature‐programmed desorption analysis indicated that, although significantimprovements to the hydrothermal stability of nano‐sized HZSM‐5 zeolites can be observedwhen adopting both phosphorus modification strategies, impregnation with trimethyl phosphatedisplays further enhancement of the hydrothermal stability. This is because higher structural crystallinityis retained, larger specific surface areas/micropore volumes form, and there are greaternumbers of surface acid sites. Reaction experiments conducted using a fixed‐bed micro‐reactor(catalyst/oil ratio = 4, time on stream = 4 s) showed OCC of full‐range FCC gasoline-under a fluidized‐bed reaction mode configuration-to be a viable solution for the olefin problem of FCC gasoline.This reaction significantly decreased the olefin content in the full‐range FCC gasoline feed, andspecifically heavy‐end olefins, by converting the olefins into value‐added C2–C4 olefins and aromatics.At the same time, sulfide content of the gasoline decreased via a non‐hydrodesulfurization process.Nano‐sized HZSM‐5 zeolites modified with trimethyl phosphate exhibited enhanced catalytic performance for OCC of full‐range FCC gasoline.
基金Project supported by the National Natural Science Foundation of China (No.10176003).
文摘In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture.
基金supported by the National Natural Science Foundation of China(No.52002040)the State Key Laboratory of High Performance Civil Engineering Materials(No.2020CEM004).
文摘The microcapsule-contained self-healing materials are appealing since they can heal the cracks automatically and be effective for a long time.Although many experiments have been carried out,the influence of the size of microcapsules on the self-healing effect is still not well investigated.This study uses the two-dimensional discrete element method(DEM)to investigate the interaction between one microcapsule and one microcrack.The influence of the size of microcapsules is considered.The potential healing time and the influence of the initial damage are studied.The results indicate that the coalescence crack is affected by the size of holes.The elastic modulus,the compressive strength and the coalescence stress decrease with the rising radius of holes.The initial damage in experiments should be greater than 95%of the compressive strength to enhance the self-healing effect.The large microcapsules require slight initial damage.Both a new type of displacement field near the crack and a new category of coalescence crack are observed.The influence of sizes of holes on the cracking behavior of concrete with a circular hole and a pre-existing crack is clarified.
文摘Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still limited. In the present paper, the effect of coarse aggregate size (single grade of 5~10, 10~16, 16~20 and 20~25 mm) on stress-crack opening (σ-w) relation in normal and high strength concretes (compressive strength of 40 and 80 MPa, respectively) was studied. The investigation was based on three-point bending tests implemented by fictitious crack analysis. The result shows that coarse aggregate size and cement matrix strength significantly influence the shape of σ-w curve. For a given total aggregate content, in normal strength concrete, smaller size of aggregate leads to a high tensile strength and a sharp stress drop after the peak stress. The smaller the coarse aggregate, the steeper the σ-w curve. By contrast, in high strength concrete, the effect of aggregate size on σ-w relation almost vanishes. A similar σ-w relation is obtained for the concrete except for the case of 20~25 mm coarse aggregate size. The stress drop after the peak stress is more significant for high strength concrete than that for normal strength concrete. Meanwhile, the smaller the coarse aggregate size, the higher the flexural strength. Fracture energy and characteristic length increase with increasing coarse aggregate size in both normal and high strength concretes.
基金Project supported by the National Natural Science Foundation of China(Grant No.11172319)the Scientific Fund of Chinese Universities(Grant Nos.2011JS046 and 2013BH008)+1 种基金the Opening Fund of State Key Laboratory of Nonlinear Mechanics,Program for New Century Excellent Talents in University,China(Grant No.NCET-13-0552)the National Science Foundation for Post-doctoral Scientists of China(Grant No.2013M541086)
文摘Icosahedral quasicrystals are the most important and thermodynamically stable in all about 200 kinds of quasicrystals currently observed. Beyond the scope of classical elasticity, apart from a phonon displacement field, there is a phason displacement field in the elasticity of the quasicrystal, which induces an important effect on the mechanical properties of the material and makes an analytical solution difficult to obtain. In this paper, a finite element algorithm for the static elasticity of icosahedral quasicrystals is developed by transforming the elastic boundary value problem of the icosahedral quasicrystals into an equivalent variational problem. Analytical and numerical solutions for an icosahedral A1-Pd-Mn quasicrystal cuboid subjected to a uniaxial tension with different phonon-phason coupling parameters are given to verify the validity of the numerical approach. A comparison between the analytical and numerical solutions of the specimen demonstrates the accuracy and efficiency of the present algorithm. Finally, in order to reveal the fracture behavior of the icosahedral A1-Pd-Mn quasicrystal, a cracked specimen with a finite size of matter is investigated, both with and without phonon-phason coupling. Meanwhile, the geometry factors are calculated, including the stress intensity factor and the crack opening displacement for the finite-size specimen. Computational results reveal the importance of pbonon-phason coupling effect on the icosahedral A1-Pd-Mn quasicrystal. Furthermore, the finite element procedure can be used to solve more complicated boundary value problems.
文摘Results indicate that under cyclic tension the growth rate of short fatigue crack from notch root will be lowered greatly by tensile pre-loading,but only a little change by compressive pre-loading. The effect of tensile pre-loading will decrease with the increase of stress ratio.The variation of short fatigue crack growth rate is related to the residual stress distribution around notch root.
基金The project is supported by the Aeronautic Science Foundation,China
文摘After finishing 102 replicate constant amplitude crack initiation and growth tests on Ly12-CZ aluminum alloy plate, a statistical investigation of the fatigue crack initiation and growth process is conducted in this paper. According to the post-mortem fractographic examination by scanning electron microscopy (SEM), some qualitative observations of the spacial correlation among fatigue striations are developed to reveal the statistical nature of material intrinsic inhomogeneity during the crack growth process. From the test data, an engineering division between crack initiation and growth is defined as the upper limit of small crack. The distributions of crack initiation life N-i, growth life N, and the statistical characteristics of crack growth rate da/dN are also investigated. It is hoped that the work will provide a solid test basis for the study of probabilistic fatigue, probabilistic fracture mechanics, fatigue reliability and its engineering applications.
文摘The relation between grain size and strength of the duplex stainless steels and influence of grain size on properties of hydrogen induced cracking in these steels have been investigated. The Hall-Petch relation between grain size and strength of the steels is also followed.The susceptibility to hydrogen induced cracking of the steels increases with increasing grain size.
文摘Cracks are usually observed at the edge of materials deformed by accumulative roll bonding from conventional materials to nanostructure materials. The observed cracks then propagate in the materials during grain refinement. The cracks propagation affects the yield stress and the effective fracture energy of nanocrystalline materials. In this study, the impacts of crack propagation when measured as a function of grain size variants on nanocrystalline materials’ yield stress are investigated for a material deformed by accumulative roll-bonding. The study employs experimental data and theoretical concepts of severe plastic deformation and cracks processes in nanocrystalline materials. The current studies also focus on nano-cracks that will not lead to rapid materials failure during grain refinement. The study revealed that crack propagation varied as a function of grain size variants during grain refinement. The study also revealed that nano-crack increased during the deformation of nanostructured materials. The study also revealed that the effective fracture energy decreased as grain refinement took place. The study revealed that nanomaterials yield stress decreased with the increase in effective fracture energy. The current study suggests a theoretical model that shows the generation of nanomaterials cracks during grain refinement as a function of grain size variants. In the model, the cracks propagate on nanocrystalline materials due to the compressive load applied to a material. The model predicts that the generation of cracks as functions of grain size variants impacts the energy level in nanocrystalline materials.
基金The authors extend their appreciation to the Distinguished Scientist Fellowship Program(DSFP)at King Saud University for funding this work.
文摘The outstanding thermal,optical,electrical and mechanical properties of molybdenum disolphide(MoS_(2))heterostructures make them exceptional candidates for an extensive area of applications.Nevertheless,despite considerable technological and academic interest,there is presently a fewinformation regarding the mechanical properties of these novel two-dimensional(2D)materials in the presence of the defects.In thismanuscript,we performed extensive molecular dynamics simulations on pre-cracked and pre-notched all-molybdenum disolphide(MoS_(2))heterostructure systems using ReaxFF force field.Therefore,we study the influence of several central-crack lengths and notch diameters on the mechanical response of 2H phase,1T phase and composite 2H/1T MoS_(2) monolayers with different concentrations of 1T phase in 2H phase,under uniaxial tensile loading at room temperature.Our ReaxFF models reveal that larger cracks and notches decrease the strength of all 2D MoS_(2) single-layer heterostructures.Additionally,for all studied crack and notch sizes,2H phase of MoS_(2) films exhibits the largest strength.Maximum tensile stress of composite 2H/1T MoS_(2) nanosheet with different concentrations are higher than those for the equivalent 1T phase,which implies that the pre-cracked composite structure is remarkably stronger than the equivalent 1T phase.The comparison of the results for cracked and notched all-MoS_(2) nanosheet heterostructures reveal that the load bearing capacity of the notched samples of monolayerMoS_(2) are higher than the cracked ones.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50179002,50709013)Liaoning Province Dr. Fund(Grant No.20071025)
文摘The size effect rule of roller compacted concrete (RCC) fracture toughness was reached on the analysis of fracture toughness of RCC specimens, which have been done by project team. And then the rule was applied to the calculation formula of equivalent strength of crack director in the RCC arch dam, thus a simple and useful formula was reached. The study shows that the equivalent strength of crack directors increases with the increasing intensity of concrete, but the surplus rate of strength of crack directors section decreases with the increasing intensity of concrete and the distance between centers of adjacent crack directors, and that bilateral interval crack directors are more efficient in weakening the strength of section than unidirectional interval crack directors in the case of the same distance between adjacent crack director centers. A good design for crack directors of RCC arch dam is proposed via the rule.